.. algorithm:: .. summary:: .. relatedalgorithms:: .. properties:: Description ----------- Fits :math:`intensity` vs :math:`Q` with a straight line for each run to obtain the mean square displacement for a given range of runs. This algorithm operates on the :math:`Q` workspace (*_eq*) generated by the :ref:`ElasticWindowMultiple ` algorithm. The model used for obtaining the mean squared displacement can be selected. These models include 'Gaussian', 'Peters', 'Yi'. Workflow -------- .. diagram:: MSDFit-v1_wkflw.dot Usage ----- **Example - Performing MSDFit on simulated data.** .. testcode:: ExGeneratedDataFit # Create some data that is similar to the output of ElasticWindowMultiple sample = CreateSampleWorkspace(Function='User Defined', UserDefinedFunction='name=ExpDecay,Height=1,Lifetime=6', NumBanks=1, BankPixelWidth=1, XUnit='momentum', XMin=0.0, XMax=5.0, BinWidth=0.1) g_msd, g_param, g_fit = MSDFit(InputWorkspace=sample, Model="Gauss", XStart=0.0, XEnd=5.0, SpecMin=0, SpecMax=0) y_msd, y_param, y_fit = MSDFit(InputWorkspace=sample, Model="Yi", XStart=0.0, XEnd=5.0, SpecMin=0, SpecMax=0) print('Using Gauss Model') print('A0: ' + str(g_msd.readY(0))) print('A1: ' + str(g_msd.readY(1))) print('Using Yi Model') print('A0: ' + str(y_msd.readY(0))) print('A1: ' + str(y_msd.readY(1))) Output (the numbers on your machine my not match exactly): .. testoutput:: ExGeneratedDataFit :options: +ELLIPSIS, +NORMALIZE_WHITESPACE Using Gauss Model A0: [...] A1: [...] Using Yi Model A0: [...] A1: [...] .. categories:: .. sourcelink:: :cpp: None :h: None