.. algorithm:: .. summary:: .. relatedalgorithms:: .. properties:: Description ----------- This algorithm creates TableWorkspace with all symmetry independent reflections based on crystal structure and limits for lattice spacings. If a space group that belongs to a point group other than :math:`\bar{1}` is specified, the lattice parameters supplied to the algorithm are corrected according to the crystal system: ============== ============================================================================== ================ Crystal system Lattice parameters used by the algorithm Constrained Cell ============== ============================================================================== ================ Triclinic :math:`a`, :math:`b`, :math:`c`, :math:`\alpha`, :math:`\beta`, :math:`\gamma` :math:`a`, :math:`b`, :math:`c`, :math:`\alpha`, :math:`\beta`, :math:`\gamma` Monoclinic :math:`a`, :math:`b`, :math:`c`, :math:`\beta` :math:`a`, :math:`b`, :math:`c`, :math:`90^\circ`, :math:`\beta`, :math:`90^\circ` Orthorhombic :math:`a`, :math:`b`, :math:`c` :math:`a`, :math:`b`, :math:`c`, :math:`90^\circ`, :math:`90^\circ`, :math:`90^\circ` Tetragonal :math:`a`, :math:`c` :math:`a`, :math:`a`, :math:`c`, :math:`90^\circ`, :math:`90^\circ`, :math:`90^\circ` Hexagonal :math:`a`, :math:`c` :math:`a`, :math:`a`, :math:`c`, :math:`90^\circ`, :math:`90^\circ`, :math:`120^\circ` Trigonal :math:`a`, :math:`\alpha` :math:`a`, :math:`a`, :math:`a`, :math:`\alpha`, :math:`\alpha`, :math:`\alpha` Cubic :math:`a` :math:`a`, :math:`a`, :math:`a`, :math:`90^\circ`, :math:`90^\circ`, :math:`90^\circ` ============== ============================================================================== ================ If other parameters are supplied, for example `a = 2.0` and `b = 5.0` with point group :math:`m\bar{3}m`, these parameters are discarded by the algorithm. The resulting TableWorkspace can be used by other POLDI-related routines. Usage ----- The following usage example illustrates how the algorithm can be used to generate a table of symmetry independent reflections for a given lattice, in this case using the crystal structure of CsCl. .. testcode:: PoldiCreatePeaksFromCellExample # Generate all unique reflections for CsCl between 0.55 and 4.0 Angstrom csClReflections = PoldiCreatePeaksFromCell( SpaceGroup="P m -3 m", Atoms="Cl 0 0 0 1.0 0.005; Cs 0.5 0.5 0.5 1.0 0.005", a=4.126, LatticeSpacingMin=0.55, LatticeSpacingMax=4.0) print("CsCl has {} unique reflections in the range between 0.55 and 4.0 Angstrom.".format(csClReflections.rowCount())) Output: .. testoutput:: PoldiCreatePeaksFromCellExample CsCl has 68 unique reflections in the range between 0.55 and 4.0 Angstrom. .. categories:: .. sourcelink::