.. algorithm:: .. summary:: .. relatedalgorithms:: .. properties:: Description ----------- Scales the X axis, the X-coordinate of histograms in a histogram workspace, and the X-coordinate of events in an event workspace by the requested amount. - The amount can be specified either as: - an absolute numerical value via the "Factor" argument or - an detector parameter name whose value is retrieved from the instrument. Usage ----- **Example - Modify the mean and standard deviation of a Gaussian via rescaling of the X-axis:** .. testcode:: Ex import numpy as np # A Gaussian in the [-1, 1] range DataX=np.arange(-1,1,0.01) mean=0.3 sigma=0.2 DataY=np.exp( -(DataX-mean)**2/(2*sigma**2) ) ws = CreateWorkspace(DataX,DataY) # Center the Gaussian by shifting the X-axis, then find its average ws2 = ScaleX(ws, Factor=-mean, Operation='Add') print('mean={:.2f}'.format(abs(np.sum( ws2.dataX(0) *ws2.dataY(0) ) / np.sum( ws2.dataY(0) )))) # Decrease the standard deviation of the Gaussian by half via shrinkage of the X-axis, # then find its standard deviation ws3 = ScaleX(ws2, Factor=0.5, Operation='Multiply') print('sigma={:.2f}'.format(np.sqrt( np.sum( ws3.dataX(0)**2 *ws3.dataY(0) ) / np.sum( ws3.dataY(0) ) ))) Output: .. testoutput:: Ex mean=0.00 sigma=0.10 .. categories:: .. sourcelink::