.. _func-AFMLF: ====== AFMLF ====== .. index:: AFMLF Description ----------- A pair of frequencies for aligned Anti-ferrormagnetic magnetism in Longitudinal Fields. .. math:: A(t) = \frac{A_0}{2}((1-a_1)+a_1\cos(\omega_1t+\phi))+(1-a_2)+a_2\cos(\omega_2t+\phi)) where, .. math:: a_1 =\frac{(f_a\sin\theta)^2}{(f_b+f_a\cos\theta)^2+(f_a\sin\theta)^2} , .. math:: a_2 =\frac{(f_a\sin\theta)^2}{((f_b-f_a\cos\theta)^2+(f_a\sin\theta)^2)} , .. math:: \omega_1 = 2\pi\sqrt{f_a^2+f_b^2+2f_af_b\cos\theta} , .. math:: \omega_2 = 2\pi\sqrt{f_a^2+f_b^2-2f_af_b\cos\theta} , :math:`f_a` is the ZF frequency (MHz), :math:`f_b = 0.01355 B` for B is the applied field, :math:`\theta` is the angle of internal field w.r.t. to applied field, and :math:`\phi` is the phase. .. plot:: from mantid.simpleapi import FunctionWrapper import matplotlib.pyplot as plt import numpy as np x = np.arange(0.1,16,0.1) y = FunctionWrapper("AFMLF") fig, ax=plt.subplots() ax.plot(x, y(x)) ax.set_xlabel('t($\mu$s)') ax.set_ylabel('A(t)') .. attributes:: .. properties:: References ---------- [1] `F.L. Pratt, Physica B 289-290, 710 (2000) `_. .. categories:: .. sourcelink::