.. _func-DiffRotDiscreteCircle: ===================== DiffRotDiscreteCircle ===================== .. index:: DiffRotDiscreteCircle Description ----------- Summary ------- This fitting function models the dynamics structure factor of a particle undergoing discrete jumps on N-sites evenly distributed in a circle. The particle can only jump to neighboring sites. This is the most common type of discrete rotational diffusion in a circle. Markov model for jumps between neighboring sites: .. math:: \frac{d}{dt} p_j(t) = \frac{1}{\tau} [p_{j-1}(t) -2 p_j(t) + p_{j+1}(t)] The Decay fitting parameter :math:`\tau` is the inverse of the transition rate. This, along with the circle radius :math:`r`, conform the two fundamental fitting parameters of the structure factor :math:`S(Q,E)`: .. math:: S(Q,E) \equiv = \int e^{-iEt/\hbar} I(Q,t) dt = A_0(Q,r) \delta (E) + \frac{1}{\pi} \sum_{l=1}^{N-1} A_l (Q,r) \frac{\hbar \tau_l^{-1}}{(\hbar \tau_l^{-1})^2+E^2} .. math:: A_l(Q,r) = \frac{1}{N} \sum_{k=1}^{N} j_0( 2 Q r \sin(\frac{\pi k}{N}) ) \cos(\frac{2\pi lk}{N}) .. math:: \tau_l^{-1} = 4 \tau^{-1} \sin^2(\frac{\pi l}{N}) The transition rate, expressed in units of energy is :math:`h\tau^{-1}`, with h = 4.135665616 meV ps. This function is a composite of :ref:`ElasticDiffRotDiscreteCircle ` and :ref:`InelasticDiffRotDiscreteCircle `. When using DiffRotDiscreteCircle, the value of Q can be obtained either though the Q attribute or can be calculated from the input workspace using the WorkspaceIndex property. The value calculated using the workspace is used whenever the Q attribute is empty. Example: Methyl Rotations ------------------------- Methyl Rotations can be modelled setting N=3. In this case, the inelastic part reduces to a single Lorentzian: .. math:: S(Q,E) = A_0(Q,r) \delta (E) + \frac{2}{\pi} A_1 (Q,r) \frac{3 \hbar \tau^{-1}}{(3 \hbar \tau^{-1})^2+E^2} If, alternatively, one models these dynamics using the `Lorentzian `__ function provided in Mantid: .. math:: S(Q,E) = A \delta (\omega) + \frac{B}{\pi} \left( \frac{\frac{\Gamma}{2}}{(\frac{\Gamma}{2})^2 + (\hbar\omega)^2}\right) Then: .. math:: B = \frac{1}{\pi}h A_1 .. math:: \Gamma = \frac{3}{\pi} h\tau^{-1} = 3.949269754 meV\cdot THz\cdot \tau^{-1} .. attributes:: :math:`N` (integer, default=3) number of sites - :math:`NumDeriv` (boolean, default=true) carry out numerical derivative - :math:`Q` (double, default=0.5) Momentum transfer .. properties:: .. categories:: .. sourcelink::