.. _func-Meier: ===== Meier ===== .. index:: Meier Description ----------- Time dependence of the polarization function for a static muon interacting with nuclear spin [1]. .. math:: A(t)=\frac{A_0*G(t)*L(t)}{3}(2P_x+P_z) where: .. math:: G(t) = e^{-0.5(\sigma t)^2}, .. math:: L(t) = e^{-\Lambda t}, .. math:: P_z(t) = \frac{1}{2J+1}\left\{1+\sum^J_{m=-J+1}[\cos^2(2\alpha_m)+\sin^2(2\alpha_m)\cos(\lambda^+_m-\lambda^-_m)t]\right\}, .. math:: P_x(t) = \frac{1}{2J+1}\sum^J_{m=-J} \{ \cos^2\alpha_{m+1}\sin^2\alpha_m\cos(\lambda_{m+1}^+-\lambda_m^+)t +\cos^2\alpha_{m+1}\cos^2\alpha_m\cos(\lambda_{m+1}^+-\lambda_m^-)t +\sin^2\alpha_{m+1}\sin^2\alpha_m\cos(\lambda_{m+1}^--\lambda_m^+)t +\sin^2\alpha_{m+1}\cos^2\alpha_m\cos(\lambda_{m+1}^--\lambda_m^-)t\}, .. math:: \lambda_m^\pm = \frac{1}{2}[\omega_Q(2m^2-2m+1)+\omega_D\pm W_m], .. math:: W_m = \{(\omega_D+\omega_Q)^2(2m-1)^2+\omega_D^2[J(J+1)-m(m-1)]\}^\frac{1}{2}, .. math:: \tan(2\alpha_m)=\frac{\omega_D[J(J+1)-m(m-1)]^\frac{1}{2}}{(1-2m)(\omega_D+\omega_Q)}, :math:`A_0` is the amplitude :math:`\omega_D` is the angular frequency due to dipolar coupling :math:`\omega_Q` is the angular frequency due to quadrupole interaction of the nuclear spin :math:`J` due to a field gradient exerted by the presence of the muon :math:`J` is the total angular momentum quantum number :math:`\sigma` is the gaussian decay rate :math:`\Lambda` is the exponential decay rate and :math:`m` is the z-component of the total orbital quantum number. .. plot:: from mantid.simpleapi import FunctionWrapper import matplotlib.pyplot as plt import numpy as np x = np.arange(0.1,16,0.1) y = FunctionWrapper("Meier") fig, ax=plt.subplots() ax.plot(x, y(x)) ax.set_xlabel('t($\mu$s)') ax.set_ylabel('A(t)') .. attributes:: References ---------- [1] `P.H. Meier, HFI 17-19 427-434 (1984) `_. .. properties:: .. categories:: .. sourcelink::