.. _func-SpinDiffusion: ============= SpinDiffusion ============= .. index:: SpinDiffusion Description ----------- The Spin diffusion fitting function, models the diffusion of isotropic muonium as a function of applied field for 1D, 2D and 3D behaviour [1]_. The data fitted using this fit function is assumed to be in units of Gauss. .. math:: \lambda(B) &= \frac{A^2}{4} J(\omega) \\ J(\omega) &= 2 \int_{0}^{+\infty} S(t)\cos(\omega t) \\ S(t) &= \prod_{i=1}^{3} \exp(-2 D_{i} t) I_{0}(2 D_{i} t) \\ \omega &= 2 \pi f = \gamma_{\mu} B where: - :math:`I_{0}(x)` is the zeroth order modified Bessel function. - :math:`\omega` is the angular momentum (:math:`MHz`). - :math:`\gamma_{\mu}` is the Muon gyromagnetic ratio (:math:`2 \pi \times 0.001356 MHz/G`). - :math:`S(t)` is the autocorrelation function, represented by an anisotropic random walk. - :math:`J(\omega)` is the spectral density (:math:`MHz^{-1}`). It is the Fourier Transform of :math:`S(t)`. - :math:`A` is a parameter to be fitted. - :math:`D_{i}` are the fast and slow rate dipolar terms. These are also fitting parameters. Systems of different dimensionality :math:`d` can simply be represented in terms of fast and slow rates :math:`D_{\parallel}` and :math:`D_{\perp}`: .. math:: D_{1} = D_{\parallel}, D_{2}, D_{3} = D_{\perp} (d=1) D_{1}, D_{2} = D_{\parallel}, D_{3} = D_{\perp} (d=2) D_{1}, D_{2}, D_{3} = D_{\parallel} (d=3) For the :math:`d=3` case, the :math:`D_{\perp}` parameter has no significance. It may be a good idea to fix this parameter to prevent the minimizer from performing unnecessary optimization steps in this case. .. attributes:: .. properties:: References ---------- .. [1] Blundell, Stephen J., and others (eds), Muon Spectroscopy: An Introduction (Oxford, 2021; online edn, Oxford Academic, 23 June 2022), pp. 117-119, https://doi.org/10.1093/oso/9780198858959.001.0001, accessed 17 Apr. 2024. .. categories:: .. sourcelink::