\(\renewcommand\AA{\unicode{x212B}}\)
PoldiCreatePeaksFromCell v1¶
Summary¶
Generate a TableWorkspace with all symmetry independent reflections using a unit cell.
See Also¶
Properties¶
Name |
Direction |
Type |
Default |
Description |
---|---|---|---|---|
SpaceGroup |
Input |
string |
A 1 1 2 |
SpaceGroup of the crystal structure. Allowed values: [‘A 1 1 2’, ‘A 1 1 2/a’, ‘A 1 1 2/m’, ‘A 1 1 a’, ‘A 1 1 m’, ‘A 1 2 1’, ‘A 1 2/m 1’, ‘A 1 2/n 1’, ‘A 1 m 1’, ‘A 1 n 1’, ‘A 2 2 2’, ‘A 2 a a’, ‘A 2 m m’, ‘A 21 2 2’, ‘A 21 a m’, ‘A 21 m a’, ‘A e 2 a’, ‘A e 2 m’, ‘A e a 2’, ‘A e a a’, ‘A e a m’, ‘A e m 2’, ‘A e m a’, ‘A e m m’, ‘A m 2 a’, ‘A m 2 m’, ‘A m a 2’, ‘A m a a’, ‘A m a m’, ‘A m m 2’, ‘A m m a’, ‘A m m m’, ‘B 1 1 2’, ‘B 1 1 2/m’, ‘B 1 1 2/n’, ‘B 1 1 m’, ‘B 1 1 n’, ‘B 2 2 2’, ‘B 2 21 2’, ‘B 2 e b’, ‘B 2 e m’, ‘B 2 m b’, ‘B 2 m m’, ‘B b 2 b’, ‘B b 21 m’, ‘B b e 2’, ‘B b e b’, ‘B b e m’, ‘B b m 2’, ‘B b m b’, ‘B b m m’, ‘B m 2 m’, ‘B m 21 b’, ‘B m e 2’, ‘B m e b’, ‘B m e m’, ‘B m m 2’, ‘B m m b’, ‘B m m m’, ‘C 1 2 1’, ‘C 1 2/c 1’, ‘C 1 2/m 1’, ‘C 1 c 1’, ‘C 1 m 1’, ‘C 2 2 2’, ‘C 2 2 21’, ‘C 2 c e’, ‘C 2 c m’, ‘C 2 m e’, ‘C 2 m m’, ‘C c 2 e’, ‘C c 2 m’, ‘C c c 2’, ‘C c c e’, ‘C c c m’, ‘C c m 21’, ‘C c m e’, ‘C c m m’, ‘C m 2 e’, ‘C m 2 m’, ‘C m c 21’, ‘C m c e’, ‘C m c m’, ‘C m m 2’, ‘C m m e’, ‘C m m m’, ‘F -4 3 c’, ‘F -4 3 m’, ‘F 2 2 2’, ‘F 2 3’, ‘F 2 d d’, ‘F 2 m m’, ‘F 4 3 2’, ‘F 41 3 2’, ‘F d -3’, ‘F d -3 :2’, ‘F d -3 c’, ‘F d -3 c :2’, ‘F d -3 m’, ‘F d -3 m :2’, ‘F d 2 d’, ‘F d d 2’, ‘F d d d’, ‘F d d d :2’, ‘F m -3’, ‘F m -3 c’, ‘F m -3 m’, ‘F m 2 m’, ‘F m m 2’, ‘F m m m’, ‘I -4’, ‘I -4 2 d’, ‘I -4 2 m’, ‘I -4 3 d’, ‘I -4 3 m’, ‘I -4 c 2’, ‘I -4 m 2’, ‘I 1 1 2’, ‘I 1 1 2/b’, ‘I 1 1 2/m’, ‘I 1 1 b’, ‘I 1 1 m’, ‘I 1 2 1’, ‘I 1 2/a 1’, ‘I 1 2/m 1’, ‘I 1 a 1’, ‘I 1 m 1’, ‘I 2 2 2’, ‘I 2 3’, ‘I 2 c b’, ‘I 2 c m’, ‘I 2 m b’, ‘I 2 m m’, ‘I 21 21 21’, ‘I 21 3’, ‘I 4’, ‘I 4 2 2’, ‘I 4 3 2’, ‘I 4 c m’, ‘I 4 m m’, ‘I 4/m’, ‘I 4/m c m’, ‘I 4/m m m’, ‘I 41’, ‘I 41 2 2’, ‘I 41 3 2’, ‘I 41 c d’, ‘I 41 m d’, ‘I 41/a’, ‘I 41/a :2’, ‘I 41/a c d’, ‘I 41/a c d :2’, ‘I 41/a m d’, ‘I 41/a m d :2’, ‘I a -3’, ‘I a -3 d’, ‘I b a 2’, ‘I b a m’, ‘I b c a’, ‘I b m 2’, ‘I b m m’, ‘I c 2 a’, ‘I c 2 m’, ‘I c a b’, ‘I c m a’, ‘I c m m’, ‘I m -3’, ‘I m -3 m’, ‘I m 2 a’, ‘I m 2 m’, ‘I m a 2’, ‘I m a m’, ‘I m c b’, ‘I m c m’, ‘I m m 2’, ‘I m m a’, ‘I m m b’, ‘I m m m’, ‘P -1’, ‘P -3’, ‘P -3 1 c’, ‘P -3 1 m’, ‘P -3 c 1’, ‘P -3 m 1’, ‘P -4’, ‘P -4 2 c’, ‘P -4 2 m’, ‘P -4 21 c’, ‘P -4 21 m’, ‘P -4 3 m’, ‘P -4 3 n’, ‘P -4 b 2’, ‘P -4 c 2’, ‘P -4 m 2’, ‘P -4 n 2’, ‘P -6’, ‘P -6 2 c’, ‘P -6 2 m’, ‘P -6 c 2’, ‘P -6 m 2’, ‘P 1’, ‘P 1 1 2’, ‘P 1 1 2/a’, ‘P 1 1 2/b’, ‘P 1 1 2/m’, ‘P 1 1 2/n’, ‘P 1 1 21’, ‘P 1 1 21/a’, ‘P 1 1 21/b’, ‘P 1 1 21/m’, ‘P 1 1 21/n’, ‘P 1 1 a’, ‘P 1 1 b’, ‘P 1 1 m’, ‘P 1 1 n’, ‘P 1 2 1’, ‘P 1 2/a 1’, ‘P 1 2/c 1’, ‘P 1 2/m 1’, ‘P 1 2/n 1’, ‘P 1 21 1’, ‘P 1 21/a 1’, ‘P 1 21/c 1’, ‘P 1 21/m 1’, ‘P 1 21/n 1’, ‘P 1 a 1’, ‘P 1 c 1’, ‘P 1 m 1’, ‘P 1 n 1’, ‘P 2 2 2’, ‘P 2 2 21’, ‘P 2 21 2’, ‘P 2 21 21’, ‘P 2 3’, ‘P 2 a a’, ‘P 2 a n’, ‘P 2 c b’, ‘P 2 c m’, ‘P 2 m b’, ‘P 2 m m’, ‘P 2 n a’, ‘P 2 n n’, ‘P 21 2 2’, ‘P 21 2 21’, ‘P 21 21 2’, ‘P 21 21 21’, ‘P 21 3’, ‘P 21 a b’, ‘P 21 a m’, ‘P 21 c a’, ‘P 21 c n’, ‘P 21 m a’, ‘P 21 m n’, ‘P 21 n b’, ‘P 21 n m’, ‘P 3’, ‘P 3 1 2’, ‘P 3 1 c’, ‘P 3 1 m’, ‘P 3 2 1’, ‘P 3 c 1’, ‘P 3 m 1’, ‘P 31’, ‘P 31 1 2’, ‘P 31 2 1’, ‘P 32’, ‘P 32 1 2’, ‘P 32 2 1’, ‘P 4’, ‘P 4 2 2’, ‘P 4 21 2’, ‘P 4 3 2’, ‘P 4 b m’, ‘P 4 c c’, ‘P 4 m m’, ‘P 4 n c’, ‘P 4/m’, ‘P 4/m b m’, ‘P 4/m c c’, ‘P 4/m m m’, ‘P 4/m n c’, ‘P 4/n’, ‘P 4/n :2’, ‘P 4/n b m’, ‘P 4/n b m :2’, ‘P 4/n c c’, ‘P 4/n c c :2’, ‘P 4/n m m’, ‘P 4/n m m :2’, ‘P 4/n n c’, ‘P 4/n n c :2’, ‘P 41’, ‘P 41 2 2’, ‘P 41 21 2’, ‘P 41 3 2’, ‘P 42’, ‘P 42 2 2’, ‘P 42 21 2’, ‘P 42 3 2’, ‘P 42 b c’, ‘P 42 c m’, ‘P 42 m c’, ‘P 42 n m’, ‘P 42/m’, ‘P 42/m b c’, ‘P 42/m c m’, ‘P 42/m m c’, ‘P 42/m n m’, ‘P 42/n’, ‘P 42/n :2’, ‘P 42/n b c’, ‘P 42/n b c :2’, ‘P 42/n c m’, ‘P 42/n c m :2’, ‘P 42/n m c’, ‘P 42/n m c :2’, ‘P 42/n n m’, ‘P 42/n n m :2’, ‘P 43’, ‘P 43 2 2’, ‘P 43 21 2’, ‘P 43 3 2’, ‘P 6’, ‘P 6 2 2’, ‘P 6 c c’, ‘P 6 m m’, ‘P 6/m’, ‘P 6/m c c’, ‘P 6/m m m’, ‘P 61’, ‘P 61 2 2’, ‘P 62’, ‘P 62 2 2’, ‘P 63’, ‘P 63 2 2’, ‘P 63 c m’, ‘P 63 m c’, ‘P 63/m’, ‘P 63/m c m’, ‘P 63/m m c’, ‘P 64’, ‘P 64 2 2’, ‘P 65’, ‘P 65 2 2’, ‘P a -3’, ‘P b 2 b’, ‘P b 2 n’, ‘P b 21 a’, ‘P b 21 m’, ‘P b a 2’, ‘P b a a’, ‘P b a b’, ‘P b a m’, ‘P b a n’, ‘P b a n :2’, ‘P b c 21’, ‘P b c a’, ‘P b c b’, ‘P b c m’, ‘P b c n’, ‘P b m 2’, ‘P b m a’, ‘P b m b’, ‘P b m m’, ‘P b m n’, ‘P b n 21’, ‘P b n a’, ‘P b n b’, ‘P b n m’, ‘P b n n’, ‘P c 2 a’, ‘P c 2 m’, ‘P c 21 b’, ‘P c 21 n’, ‘P c a 21’, ‘P c a a’, ‘P c a b’, ‘P c a m’, ‘P c a n’, ‘P c c 2’, ‘P c c a’, ‘P c c b’, ‘P c c m’, ‘P c c n’, ‘P c m 21’, ‘P c m a’, ‘P c m b’, ‘P c m m’, ‘P c m n’, ‘P c n 2’, ‘P c n a’, ‘P c n a :2’, ‘P c n b’, ‘P c n m’, ‘P c n n’, ‘P m -3’, ‘P m -3 m’, ‘P m -3 n’, ‘P m 2 a’, ‘P m 2 m’, ‘P m 21 b’, ‘P m 21 n’, ‘P m a 2’, ‘P m a a’, ‘P m a b’, ‘P m a m’, ‘P m a n’, ‘P m c 21’, ‘P m c a’, ‘P m c b’, ‘P m c m’, ‘P m c n’, ‘P m m 2’, ‘P m m a’, ‘P m m b’, ‘P m m m’, ‘P m m n’, ‘P m m n :2’, ‘P m n 21’, ‘P m n a’, ‘P m n b’, ‘P m n m’, ‘P m n m :2’, ‘P m n n’, ‘P n -3’, ‘P n -3 :2’, ‘P n -3 m’, ‘P n -3 m :2’, ‘P n -3 n’, ‘P n -3 n :2’, ‘P n 2 b’, ‘P n 2 n’, ‘P n 21 a’, ‘P n 21 m’, ‘P n a 21’, ‘P n a a’, ‘P n a b’, ‘P n a m’, ‘P n a n’, ‘P n c 2’, ‘P n c a’, ‘P n c b’, ‘P n c b :2’, ‘P n c m’, ‘P n c n’, ‘P n m 21’, ‘P n m a’, ‘P n m b’, ‘P n m m’, ‘P n m m :2’, ‘P n m n’, ‘P n n 2’, ‘P n n a’, ‘P n n b’, ‘P n n m’, ‘P n n n’, ‘P n n n :2’, ‘R -3’, ‘R -3 :r’, ‘R -3 c’, ‘R -3 c :r’, ‘R -3 m’, ‘R -3 m :r’, ‘R 3’, ‘R 3 :r’, ‘R 3 c’, ‘R 3 c :r’, ‘R 3 m’, ‘R 3 m :r’, ‘R 32’, ‘R 32 :r’] |
Atoms |
Input |
string |
Atoms in the asymmetric unit. Format: Element x y z Occupancy U; … |
|
a |
Input |
number |
1 |
Lattice parameter a |
b |
Input |
number |
1 |
Lattice parameter b |
c |
Input |
number |
1 |
Lattice parameter c |
alpha |
Input |
number |
90 |
Lattice parameter alpha |
beta |
Input |
number |
90 |
Lattice parameter beta |
gamma |
Input |
number |
90 |
Lattice parameter gamma |
LatticeSpacingMin |
Input |
number |
0.5 |
Smallest allowed lattice spacing. |
LatticeSpacingMax |
Input |
number |
0 |
Largest allowed lattice spacing. |
OutputWorkspace |
Output |
Mandatory |
List with calculated peaks. |
Description¶
This algorithm creates TableWorkspace with all symmetry independent reflections based on crystal structure and limits for lattice spacings. If a space group that belongs to a point group other than \(\bar{1}\) is specified, the lattice parameters supplied to the algorithm are corrected according to the crystal system:
Crystal system |
Lattice parameters used by the algorithm |
Constrained Cell |
---|---|---|
Triclinic |
\(a\), \(b\), \(c\), \(\alpha\), \(\beta\), \(\gamma\) |
\(a\), \(b\), \(c\), \(\alpha\), \(\beta\), \(\gamma\) |
Monoclinic |
\(a\), \(b\), \(c\), \(\beta\) |
\(a\), \(b\), \(c\), \(90^\circ\), \(\beta\), \(90^\circ\) |
Orthorhombic |
\(a\), \(b\), \(c\) |
\(a\), \(b\), \(c\), \(90^\circ\), \(90^\circ\), \(90^\circ\) |
Tetragonal |
\(a\), \(c\) |
\(a\), \(a\), \(c\), \(90^\circ\), \(90^\circ\), \(90^\circ\) |
Hexagonal |
\(a\), \(c\) |
\(a\), \(a\), \(c\), \(90^\circ\), \(90^\circ\), \(120^\circ\) |
Trigonal |
\(a\), \(\alpha\) |
\(a\), \(a\), \(a\), \(\alpha\), \(\alpha\), \(\alpha\) |
Cubic |
\(a\) |
\(a\), \(a\), \(a\), \(90^\circ\), \(90^\circ\), \(90^\circ\) |
If other parameters are supplied, for example a = 2.0 and b = 5.0 with point group \(m\bar{3}m\), these parameters are discarded by the algorithm. The resulting TableWorkspace can be used by other POLDI-related routines.
Usage¶
The following usage example illustrates how the algorithm can be used to generate a table of symmetry independent reflections for a given lattice, in this case using the crystal structure of CsCl.
# Generate all unique reflections for CsCl between 0.55 and 4.0 Angstrom
csClReflections = PoldiCreatePeaksFromCell(
SpaceGroup="P m -3 m",
Atoms="Cl 0 0 0 1.0 0.005; Cs 0.5 0.5 0.5 1.0 0.005",
a=4.126,
LatticeSpacingMin=0.55, LatticeSpacingMax=4.0)
print("CsCl has {} unique reflections in the range between 0.55 and 4.0 Angstrom.".format(csClReflections.rowCount()))
Output:
CsCl has 68 unique reflections in the range between 0.55 and 4.0 Angstrom.
Categories: AlgorithmIndex | SINQ\Poldi
Source¶
C++ header: PoldiCreatePeaksFromCell.h
C++ source: PoldiCreatePeaksFromCell.cpp