\(\renewcommand\AA{\unicode{x212B}}\)

AFMLF

Description

A pair of frequencies for aligned Anti-ferrormagnetic magnetism in Longitudinal Fields.

\[A(t) = \frac{A_0}{2}((1-a_1)+a_1\cos(\omega_1t+\phi))+(1-a_2)+a_2\cos(\omega_2t+\phi))\]

where,

\[a_1 =\frac{(f_a\sin\theta)^2}{(f_b+f_a\cos\theta)^2+(f_a\sin\theta)^2} ,\]
\[a_2 =\frac{(f_a\sin\theta)^2}{((f_b-f_a\cos\theta)^2+(f_a\sin\theta)^2)} ,\]
\[\omega_1 = 2\pi\sqrt{f_a^2+f_b^2+2f_af_b\cos\theta} ,\]
\[\omega_2 = 2\pi\sqrt{f_a^2+f_b^2-2f_af_b\cos\theta} ,\]

\(f_a\) is the ZF frequency (MHz),

\(f_b = 0.01355 B\) for B is the applied field,

\(\theta\) is the angle of internal field w.r.t. to applied field,

and \(\phi\) is the phase.

(Source code, png, hires.png, pdf)

../../_images/AFMLF-1.png

Properties (fitting parameters)

Name

Default

Description

A0

0.2

Amplitude

Freq

2.0

ZF Frequency (MHz)

Angle

50.0

Angle of internal field w.r.t. to applied field (degrees)

Field

10.0

Applied Field (G)

Phi

0.0

Phase (rad)

References

[1] F.L. Pratt, Physica B 289-290, 710 (2000).

Categories: FitFunctions | Muon\MuonSpecific

Source

Python: AFMLF.py