Table of Contents
Name | Direction | Type | Default | Description |
---|---|---|---|---|
InputWorkspace | Input | MatrixWorkspace | Mandatory | The name of the Workspace2D to take as input |
OutputWorkspace | Output | MatrixWorkspace | Mandatory | The name of the workspace in which to store the result |
RangeLower | Input | number | Optional | The X value to search from (default min) |
RangeUpper | Input | number | Optional | The X value to search to (default max) |
StartWorkspaceIndex | Input | number | 0 | Start spectrum number (default 0) |
EndWorkspaceIndex | Input | number | Optional | End spectrum number (default max) |
The algorithm creates a new 1D workspace containing all maxima as well as their X boundaries and error. This is used in particular for single crystal as a quick way to find strong peaks.
# Create a workspace with two peaks in each spectrum
ws = CreateSampleWorkspace(Function='Multiple Peaks')
# Find the max values
max_ws = Max(ws)
# Check the returned values
print('Maximum found at bin [ {} , {} ], value {}'.format(max_ws.readX(0)[0], max_ws.readX(0)[1], max_ws.readY(0)[0]))
print('In original workspace')
print('Bounds of bin 30 [ {} , {} ], value {}'.format(ws.readX(0)[30], ws.readX(0)[31], ws.readY(0)[30]))
# Find another peak
max_ws = Max(ws,RangeLower = 7000)
# Check the returned values
print('Maximum found at bin [ {} , {} ], value {}'.format(max_ws.readX(0)[0], max_ws.readX(0)[1], max_ws.readY(0)[0]))
print('In original workspace')
print('Bounds of bin 60 [ {} , {} ], value {}'.format(ws.readX(0)[60], ws.readX(0)[61], ws.readY(0)[60]))
Maximum found at bin [ 6000.0 , 6200.0 ], value 10.3
In original workspace
Bounds of bin 30 [ 6000.0 , 6200.0 ], value 10.3
Maximum found at bin [ 12000.0 , 12200.0 ], value 8.3
In original workspace
Bounds of bin 60 [ 12000.0 , 12200.0 ], value 8.3
Categories: Algorithms | Arithmetic