SaveDiffFittingAscii v1

../_images/SaveDiffFittingAscii-v1_dlg.png

SaveDiffFittingAscii dialog.

Summary

Saves the results to ASCII file after carrying out single peak fitting process or running EnggFitPeaks algorithm.

Properties

Name Direction Type Default Description
InputWorkspace Input TableWorkspace Mandatory The name of the workspace containing the data you want to save to a TBL file
Filename Input string Mandatory The filename to use for the saved data. Allowed values: [‘.txt’, ‘.csv’, ‘’]
RunNumber Input string   Run number list of the focused files, which is used to generate the parameters table workspace
Bank Input string   Bank number list of the focused files, which is used to generate the parameters table workspace
OutMode Input string AppendToExistingFile Over write the file or append data to existing file. Allowed values: [‘AppendToExistingFile’, ‘OverwriteFile’]

Description

Saves a TableWorkspace containing Diffraction Fitting results as an ASCII file. All of the columns must be typed as ‘double’ in order to successfully save it as an ASCII file. A GroupWorkspace of TableWorkspace can also be saved where the run number and bank is provided manually as a list in the correct order.

The following TableWorkspace:

dSpacing A0 A0_Err A1 A1_Err X0 X0_Err A A_Err B B_Err S S_Err I I_Err Chi
1.6092 0.015160 5.41233 -1.93673e-06 0.00018 0.00018 5.8782518 0.021762 0.003330 0.023050 0.0035287 21.99236 7.1390246 521.0432 27.212413 3.0258827
1.6834 0.177540 5.41233 3.9826001041 0.00012 0.00018 30963.562 0.021762 94.09466 0.104790 44.493605 0.060733 24.092391 801.0639 23.93961 3.0258827
-0.05474 7.0641652 1.04e-05 -1.93673e-06 0.000194 36280.22 7.9724626 0.074861 0.0398539 0.022008 0.0009267 38.47428 5.1456557 6386.304 63.73136 3.2363716

becomes:

run number: 23424
bank: 1
dSpacing,A0,A0_Err,A1,A1_Err,X0,X0_Err,A,A_Err,B,B_Err,S,S_Err,I,I_Err,Chi
1.6092,0.01516,5.4123299999999999,-1.93673e-06,0.00018000000000000001,0.00018000000000000001,5.8782518000000001,0.021762,0.0033300000000000001,0.023050000000000001,0.0035287000000000001,21.992360000000001,7.1390245999999999,521.04319999999996,27.212413000000002,3.0258826999999999
1.6834,0.17754,5.4123299999999999,3.9826001040999999,0.00012,0.00018000000000000001,30963.562000000002,0.021762,4.0946689999999997,0.10478999999999999,44.493605000000002,0.060733000000000002,24.092390999999999,801.06389999999999,23.939609999999998,3.0258826999999999
-0.054739999999999997,7.0641651999999997,1.04e-05,-1.93673e-06,0.000194,36280.220000000001,7.9724626000000001,0.074860999999999997,0.039853899999999998,0.022008,0.00092670000000000003,38.47428,5.1456556999999998,6386.3040000000001,63.731360000000002,3.2363716

This is just an example table, the values may not be valid.

Limitations

The Algorithm will fail if any of the columns is not of type ‘double’.

Usage

Example - Save a TableWorkspace in Diffraction Fitting Table format

#import the os path libraries for directory functions
import os

# Create a table workspace with data to save.
ws = CreateEmptyTableWorkspace()
ws.addColumn("double", "dSpacing");
ws.addColumn("double", "A0");
ws.addColumn("double", "A0_Err");
ws.addColumn("double", "A1");
ws.addColumn("double", "A1_Err");
ws.addColumn("double", "X0");
ws.addColumn("double", "X0_Err");
ws.addColumn("double", "A");
ws.addColumn("double", "A_Err");
ws.addColumn("double", "B");
ws.addColumn("double", "B_Err");
ws.addColumn("double", "S");
ws.addColumn("double", "S_Err");
ws.addColumn("double", "I");
ws.addColumn("double", "I_Err");
ws.addColumn("double", "Chi");

nextRow = {'dSpacing': 1.6092, 'A0': 0.015160, 'A0_Err': 5.41233, 'A1': -1.93673e-06, 'A1_Err': 0.00018,
       'X0': 0.00018, 'X0_Err': 5.8782518, 'A': 0.021762, 'A_Err': 0.003330, 'B': 0.023050,
       'B_Err': 0.0035287, 'S': 21.99236, 'S_Err': 7.1390246, 'I': 521.0432, 'I_Err': 27.212413,
       'Chi': 3.0258827}
ws.addRow(nextRow)

nextRow = {'dSpacing': 1.6834, 'A0': 0.177540, 'A0_Err': 5.41233, 'A1': 3.9826001041, 'A1_Err': 0.00012,
       'X0': 0.00018, 'X0_Err': 30963.562, 'A': 0.021762, 'A_Err': 4.094669, 'B': 0.104790,
       'B_Err': 44.493605, 'S': 0.060733, 'S_Err': 24.092391, 'I': 801.0639, 'I_Err': 23.93961,
       'Chi': 3.0258827}
ws.addRow(nextRow)

nextRow = {'dSpacing': -0.05474, 'A0': 7.0641652, 'A0_Err': 1.04e-05, 'A1': -1.93673e-06, 'A1_Err': 0.000194,
       'X0': 36280.22, 'X0_Err': 7.9724626, 'A': 0.074861, 'A_Err': 0.0398539, 'B': 0.022008,
       'B_Err': 0.0009267, 'S': 38.47428, 'S_Err': 5.1456557, 'I': 6386.304, 'I_Err': 63.73136,
       'Chi': 3.2363716}
ws.addRow(nextRow)


#Create an absolute path by joining the proposed filename to a directory
#os.path.expanduser("~") used in this case returns the home directory of the current user
savefile = os.path.join(os.path.expanduser("~"), "FittingResults.txt")

# perform the algorithm
SaveDiffFittingAscii(InputWorkspace = ws, Filename=savefile, RunNumber="21344", Bank = "1",
OutMode = "AppendToExistingFile")

print("File Exists: {}".format(os.path.exists(savefile)))

Output:

File Exists: True

Categories: Algorithms | DataHandling\Text

Source

C++ source: SaveDiffFittingAscii.cpp (last modified: 2018-03-07)

C++ header: SaveDiffFittingAscii.h (last modified: 2018-03-07)