This a python binding to the C++ class Mantid::API::Workspace.
bases: mantid.kernel.DataItem
Raises an exception This class cannot be instantiated from Python
Copies an existing workspace into a new one.
Property descriptions:
InputWorkspace(Input:req) Workspace Name of the input workspace. Must be a MatrixWorkspace (2D or EventWorkspace), a PeaksWorkspace or a MDEventWorkspace.
OutputWorkspace(Output:req) Workspace Name of the newly created cloned workspace.
Performs a unit change on the X values of a workspace
Property descriptions:
InputWorkspace(Input:req) MatrixWorkspace Name of the input workspace
OutputWorkspace(Output:req) MatrixWorkspace Name of the output workspace, can be the same as the input
Target(Input:req) string The name of the units to convert to (must be one of those registered in the Unit Factory)[Degrees, DeltaE, DeltaE_inFrequency, DeltaE_inWavenumber, dSpacing, dSpacingPerpendicular, Empty, Energy, Energy_inWavenumber, Label, Momentum, MomentumTransfer, QSquared, SpinEchoLength, SpinEchoTime, Time, TOF, Wavelength]
EMode(Input) string The energy mode (default: elastic)[Elastic, Direct, Indirect]
EFixed(Input) number Value of fixed energy in meV : EI (EMode=Direct) or EF (EMode=Indirect) . Must be set if the target unit requires it (e.g. DeltaE)
AlignBins(Input) boolean If true (default is false), rebins after conversion to ensure that all spectra in the output workspace have identical bin boundaries. This option is not recommended (see http://www.mantidproject.org/ConvertUnits).
ConvertFromPointData(Input) boolean When checked, if the Input Workspace contains Points the algorithm ConvertToHistogram will be run to convert the Points to Bins. The Output Workspace will contains Bins.
Removes a workspace from memory.
Property descriptions:
Workspace(Input:req) Workspace Name of the workspace to delete.
Returns the comment field on the workspace
Return read-only access to the WorkspaceHistory
Returns the memory footprint of the workspace in KB
Returns the name of the workspace. This could be an empty string
Returns the title of the workspace
The string ID of the class
True if the workspace has run more than n algorithms (Default=1)
An algorithm to mask a detector, or set of detectors, as not to be used. The workspace spectra associated with those detectors are zeroed.
Property descriptions:
Workspace(InOut:req) Workspace The name of the input and output workspace on which to perform the algorithm.
SpectraList(Input) int list An ArrayProperty containing a list of spectra to mask
DetectorList(Input) int list An ArrayProperty containing a list of detector ID’s to mask
WorkspaceIndexList(Input) unsigned int list An ArrayProperty containing the workspace indices to mask
MaskedWorkspace(Input) MatrixWorkspace If given but not as a SpecialWorkspace2D, the masking from this workspace will be copied. If given as a SpecialWorkspace2D, the masking is read from its Y values.[]
ForceInstrumentMasking(Input) boolean Works when ‘MaskedWorkspace’ is provided and forces to use spectra-detector mapping even in case when number of spectra in ‘Workspace’ and ‘MaskedWorkspace’ are equal
StartWorkspaceIndex(Input) number If other masks fields are provided, it’s the first index of the target workspace to be allowed to be masked from by these masks, if not, its the first index of the target workspace to mask. Default value is 0 if other masking is present or ignored if not.
EndWorkspaceIndex(Input) number If other masks are provided, it’s the last index of the target workspace allowed to be masked to by these masks, if not, its the last index of the target workspace to mask. Default is number of histograms in target workspace if other masks are present or ignored if not.
ComponentList(Input) str list An ArrayProperty containing a list of component names to mask
The name of the object
Set the comment field of the workspace
Set the title of the workspace
Returns true if the object can be accessed safely from multiple threads