FilterEvents v1

../_images/FilterEvents-v1_dlg.png

FilterEvents dialog.

Summary

Filter events from an EventWorkspace to one or multiple EventWorkspaces according to a series of splitters.

Properties

Name Direction Type Default Description
InputWorkspace Input EventWorkspace Mandatory An input event workspace
SplitterWorkspace Input Workspace Mandatory An input SpilltersWorskpace for filtering
OutputWorkspaceBaseName Input string OutputWorkspace The base name to use for the output workspace
InformationWorkspace Input TableWorkspace   Optional output for the information of each splitter workspace index.
OutputTOFCorrectionWorkspace Output MatrixWorkspace TOFCorrectWS Name of output workspace for TOF correction factor.
FilterByPulseTime Input boolean False Filter the event by its pulse time only for slow sample environment log. This option can make execution of algorithm faster. But it lowers precision.
GroupWorkspaces Input boolean False Option to group all the output workspaces. Group name will be OutputWorkspaceBaseName.
OutputWorkspaceIndexedFrom1 Input boolean False If selected, the minimum output workspace is indexed from 1 and continuous.
CorrectionToSample Input string None Type of correction on neutron events to sample time from detector time. Allowed values: [‘None’, ‘Customized’, ‘Direct’, ‘Elastic’, ‘Indirect’]
DetectorTOFCorrectionWorkspace Input TableWorkspace   Name of table workspace containing the log time correction factor for each detector.
IncidentEnergy Input number Optional Value of incident energy (Ei) in meV in direct mode.
SpectrumWithoutDetector Input string Skip Approach to deal with spectrum without detectors. Allowed values: [‘Skip’, ‘Skip only if TOF correction’]
SplitSampleLogs Input boolean True If selected, all sample logs will be splitted by the event splitters. It is not recommended for fast event log splitters.
NumberOutputWS Output number   Number of output output workspace splitted.
DBSpectrum Input number Optional Spectrum (workspace index) for debug purpose.
OutputWorkspaceNames Output str list   List of output workspaces names

Description

This algorithm filters events from an EventWorkspace to one or multiple EventWorkspaces according to an input SplittersWorkspace containing a series of splitters (i.e., SplittingIntervals).

Output

The output will be one or multiple workspaces according to the number of index in splitters. The output workspace name is the combination of parameter OutputWorkspaceBaseName and the index in splitter.

Calibration File

The calibration, or say correction, from the detector to sample must be consider in fast log. Thus a calibration file is required. The math is

TOF_calibrated = TOF_raw * correction(detector ID).

The calibration is in column data format.

A reasonable approximation of the correction is

correction(detector_ID) = L1/(L1+L2(detector_ID))

Unfiltered Events

Some events are not inside any splitters. They are put to a workspace name ended with ‘_unfiltered’.

If input property ‘OutputWorkspaceIndexedFrom1’ is set to True, then this workspace shall not be outputed.

Difference from FilterByLogValue

In FilterByLogValue(), EventList.splitByTime() is used.

In FilterEvents(), if FilterByPulse is selected true, EventList.SplitByTime is called; otherwise, EventList.SplitByFullTime() is called instead.

The difference between splitByTime and splitByFullTime is that splitByTime filters events by pulse time, and splitByFullTime considers both pulse time and TOF.

Therefore, FilterByLogValue is not suitable for fast log filtering.

Comparing with other event filtering algorithms

Wiki page EventFiltering has a detailed introduction on event filtering in MantidPlot.

Usage

Example - Filtering event without correction on TOF

ws = Load(Filename='CNCS_7860_event.nxs')
splitws, infows = GenerateEventsFilter(InputWorkspace=ws, UnitOfTime='Nanoseconds', LogName='SampleTemp',
        MinimumLogValue=279.9,  MaximumLogValue=279.98, LogValueInterval=0.01)

FilterEvents(InputWorkspace=ws, SplitterWorkspace=splitws, InformationWorkspace=infows,
        OutputWorkspaceBaseName='tempsplitws',  GroupWorkspaces=True,
        FilterByPulseTime = False, OutputWorkspaceIndexedFrom1 = False,
        CorrectionToSample = "None", SpectrumWithoutDetector = "Skip", SplitSampleLogs = False,
        OutputTOFCorrectionWorkspace='mock')

# Print result
wsgroup = mtd["tempsplitws"]
wsnames = wsgroup.getNames()
for name in sorted(wsnames):
    tmpws = mtd[name]
    print "workspace %s has %d events" % (name, tmpws.getNumberEvents())

Output:

workspace tempsplitws_0 has 124 events
workspace tempsplitws_1 has 16915 events
workspace tempsplitws_2 has 10009 events
workspace tempsplitws_3 has 6962 events
workspace tempsplitws_4 has 22520 events
workspace tempsplitws_5 has 5133 events
workspace tempsplitws_unfiltered has 50603 events

Example - Filtering event by pulse time

ws = Load(Filename='CNCS_7860_event.nxs')
splitws, infows = GenerateEventsFilter(InputWorkspace=ws, UnitOfTime='Nanoseconds', LogName='SampleTemp',
        MinimumLogValue=279.9,  MaximumLogValue=279.98, LogValueInterval=0.01)

FilterEvents(InputWorkspace=ws,
    SplitterWorkspace=splitws,
    InformationWorkspace=infows,
    OutputWorkspaceBaseName='tempsplitws',
    GroupWorkspaces=True,
    FilterByPulseTime = True,
    OutputWorkspaceIndexedFrom1 = True,
    CorrectionToSample = "None",
    SpectrumWithoutDetector = "Skip",
    SplitSampleLogs = False,
    OutputTOFCorrectionWorkspace='mock')

# Print result
wsgroup = mtd["tempsplitws"]
wsnames = wsgroup.getNames()
for name in sorted(wsnames):
    tmpws = mtd[name]
    print "workspace %s has %d events" % (name, tmpws.getNumberEvents())

Output:

workspace tempsplitws_1 has 123 events
workspace tempsplitws_2 has 16951 events
workspace tempsplitws_3 has 9972 events
workspace tempsplitws_4 has 7019 events
workspace tempsplitws_5 has 22529 events
workspace tempsplitws_6 has 5067 events

Example - Filtering event with correction on TOF

ws = Load(Filename='CNCS_7860_event.nxs')
splitws, infows = GenerateEventsFilter(InputWorkspace=ws, UnitOfTime='Nanoseconds', LogName='SampleTemp',
        MinimumLogValue=279.9,  MaximumLogValue=279.98, LogValueInterval=0.01)

FilterEvents(InputWorkspace=ws, SplitterWorkspace=splitws, InformationWorkspace=infows,
    OutputWorkspaceBaseName='tempsplitws',
    GroupWorkspaces=True,
    FilterByPulseTime = False,
    OutputWorkspaceIndexedFrom1 = False,
    CorrectionToSample = "Direct",
    IncidentEnergy=3,
    SpectrumWithoutDetector = "Skip",
    SplitSampleLogs = False,
    OutputTOFCorrectionWorkspace='mock')

# Print result
wsgroup = mtd["tempsplitws"]
wsnames = wsgroup.getNames()
for name in sorted(wsnames):
    tmpws = mtd[name]
    print "workspace %s has %d events" % (name, tmpws.getNumberEvents())

Output:

workspace tempsplitws_0 has 123 events
workspace tempsplitws_1 has 16951 events
workspace tempsplitws_2 has 9972 events
workspace tempsplitws_3 has 7019 events
workspace tempsplitws_4 has 22514 events
workspace tempsplitws_5 has 5082 events
workspace tempsplitws_unfiltered has 50605 events

Categories: Algorithms | Events | EventFiltering

Source

C++ source: FilterEvents.cpp

C++ header: FilterEvents.h

Python: FilterEvents.py