Table of Contents
Name | Direction | Type | Default | Description |
---|---|---|---|---|
InputWorkspace | Input | MatrixWorkspace | Mandatory | Sample input workspace |
XStart | Input | number | 0 | Start of fitting range |
XEnd | Input | number | 0 | End of fitting range |
SpecMin | Input | number | 0 | Start of spectra range to be fit |
SpecMax | Input | number | 0 | End of spectra range to be fit |
Plot | Input | boolean | False | Plots results after fit |
OutputWorkspace | Output | WorkspaceGroup | Mandatory | Output mean squared displacement |
ParameterWorkspace | Output | TableWorkspace | Output fit parameters table | |
FitWorkspaces | Output | WorkspaceGroup | Output fitted workspaces |
Fits vs with a straight line for each run to obtain the mean square displacement for a given range of runs.
This algorithm operates on the QSquared workspace (_q2) generated by the ElasticWindowMultiple algorithm.
Example - Performing MSDFit on simulated data.
# Create some data that is similar to the output of ElasticWindowMultiple
sample = CreateSampleWorkspace(Function='User Defined',
UserDefinedFunction='name=ExpDecay,Height=1,Lifetime=6',
NumBanks=1, BankPixelWidth=1, XUnit='QSquared', XMin=0.0,
XMax=5.0, BinWidth=0.1)
msd, param, fit = MSDFit(InputWorkspace=sample,
XStart=0.0, XEnd=5.0,
SpecMin=0, SpecMax=0)
print ', '.join(msd.getNames())
print 'A0: ' + str(msd.getItem(0).readY(0))
print 'A1: ' + str(msd.getItem(1).readY(0))
Output:
msd_A0, msd_A1
A0: [ 0.95908058]
A1: [ 0.11014908]
Categories: Algorithms | Workflow | MIDAS | PythonAlgorithms