PoldiCreatePeaksFromCell v1

../_images/PoldiCreatePeaksFromCell-v1_dlg.png

PoldiCreatePeaksFromCell dialog.

Summary

Generate a TableWorkspace with all symmetry independent reflections using a unit cell.

Properties

Name Direction Type Default Description
SpaceGroup Input string A e a 2 SpaceGroup of the crystal structure. Allowed values: [‘A e a 2’, ‘A e m 2’, ‘A m a 2’, ‘A m m 2’, ‘C 1 2 1’, ‘C 1 2/c 1’, ‘C 1 2/m 1’, ‘C 1 c 1’, ‘C 1 m 1’, ‘C 2 2 2’, ‘C 2 2 21’, ‘C c c 2’, ‘C c c e’, ‘C c c m’, ‘C m c 21’, ‘C m c e’, ‘C m c m’, ‘C m m 2’, ‘C m m e’, ‘C m m m’, ‘F -4 3 c’, ‘F -4 3 m’, ‘F 2 2 2’, ‘F 2 3’, ‘F 4 3 2’, ‘F 41 3 2’, ‘F d -3’, ‘F d -3 c’, ‘F d -3 m’, ‘F d d 2’, ‘F d d d’, ‘F m -3’, ‘F m -3 c’, ‘F m -3 m’, ‘F m m 2’, ‘F m m m’, ‘I -4’, ‘I -4 2 d’, ‘I -4 2 m’, ‘I -4 3 d’, ‘I -4 3 m’, ‘I -4 c 2’, ‘I -4 m 2’, ‘I 2 2 2’, ‘I 2 3’, ‘I 21 21 21’, ‘I 21 3’, ‘I 4’, ‘I 4 2 2’, ‘I 4 3 2’, ‘I 4 c m’, ‘I 4 m m’, ‘I 4/m’, ‘I 4/m c m’, ‘I 4/m m m’, ‘I 41’, ‘I 41 2 2’, ‘I 41 3 2’, ‘I 41 c d’, ‘I 41 m d’, ‘I 41/a’, ‘I 41/a c d’, ‘I 41/a m d’, ‘I a -3’, ‘I a -3 d’, ‘I b a 2’, ‘I b a m’, ‘I b c a’, ‘I m -3’, ‘I m -3 m’, ‘I m a 2’, ‘I m m 2’, ‘I m m a’, ‘I m m m’, ‘P -1’, ‘P -3’, ‘P -3 1 c’, ‘P -3 1 m’, ‘P -3 c 1’, ‘P -3 m 1’, ‘P -4’, ‘P -4 2 c’, ‘P -4 2 m’, ‘P -4 21 c’, ‘P -4 21 m’, ‘P -4 3 m’, ‘P -4 3 n’, ‘P -4 b 2’, ‘P -4 c 2’, ‘P -4 m 2’, ‘P -4 n 2’, ‘P -6’, ‘P -6 2 c’, ‘P -6 2 m’, ‘P -6 c 2’, ‘P -6 m 2’, ‘P 1’, ‘P 1 2 1’, ‘P 1 2/c 1’, ‘P 1 2/m 1’, ‘P 1 21 1’, ‘P 1 21/c 1’, ‘P 1 21/m 1’, ‘P 1 c 1’, ‘P 1 m 1’, ‘P 2 2 2’, ‘P 2 2 21’, ‘P 2 3’, ‘P 21 21 2’, ‘P 21 21 21’, ‘P 21 3’, ‘P 3’, ‘P 3 1 2’, ‘P 3 1 c’, ‘P 3 1 m’, ‘P 3 2 1’, ‘P 3 c 1’, ‘P 3 m 1’, ‘P 31’, ‘P 31 1 2’, ‘P 31 2 1’, ‘P 32’, ‘P 32 1 2’, ‘P 32 2 1’, ‘P 4’, ‘P 4 2 2’, ‘P 4 21 2’, ‘P 4 3 2’, ‘P 4 b m’, ‘P 4 c c’, ‘P 4 m m’, ‘P 4 n c’, ‘P 4/m’, ‘P 4/m b m’, ‘P 4/m c c’, ‘P 4/m m m’, ‘P 4/m n c’, ‘P 4/n’, ‘P 4/n b m’, ‘P 4/n c c’, ‘P 4/n m m’, ‘P 4/n n c’, ‘P 41’, ‘P 41 2 2’, ‘P 41 21 2’, ‘P 41 3 2’, ‘P 42’, ‘P 42 2 2’, ‘P 42 21 2’, ‘P 42 3 2’, ‘P 42 c m’, ‘P 42 m c’, ‘P 42 n m’, ‘P 42/m’, ‘P 42/m b c’, ‘P 42/m c m’, ‘P 42/m m c’, ‘P 42/m n m’, ‘P 42/n’, ‘P 42/n b c’, ‘P 42/n c m’, ‘P 42/n m c’, ‘P 42/n n m’, ‘P 43’, ‘P 43 2 2’, ‘P 43 21 2’, ‘P 43 3 2’, ‘P 43 b c’, ‘P 6’, ‘P 6 2 2’, ‘P 6 c c’, ‘P 6 m m’, ‘P 6/m’, ‘P 6/m c c’, ‘P 6/m m m’, ‘P 61’, ‘P 61 2 2’, ‘P 62’, ‘P 62 2 2’, ‘P 63’, ‘P 63 2 2’, ‘P 63 c m’, ‘P 63 m c’, ‘P 63/m’, ‘P 63/m c m’, ‘P 63/m m c’, ‘P 64’, ‘P 64 2 2’, ‘P 65’, ‘P 65 2 2’, ‘P a -3’, ‘P b a 2’, ‘P b a m’, ‘P b a n’, ‘P b c a’, ‘P b c m’, ‘P b c n’, ‘P c a 21’, ‘P c c 2’, ‘P c c a’, ‘P c c m’, ‘P c c n’, ‘P m -3’, ‘P m -3 m’, ‘P m -3 n’, ‘P m a 2’, ‘P m c 21’, ‘P m m 2’, ‘P m m a’, ‘P m m m’, ‘P m m n’, ‘P m n 21’, ‘P m n a’, ‘P n -3’, ‘P n -3 m’, ‘P n -3 n’, ‘P n a 21’, ‘P n c 2’, ‘P n m a’, ‘P n n 2’, ‘P n n a’, ‘P n n m’, ‘P n n n’, ‘R -3’, ‘R -3 c’, ‘R -3 m’, ‘R 3’, ‘R 3 c’, ‘R 3 m’, ‘R 32’]
Atoms Input string   Atoms in the asymmetric unit. Format: Element x y z Occupancy U; ...
a Input number 1 Lattice parameter a
b Input number 1 Lattice parameter b
c Input number 1 Lattice parameter c
alpha Input number 90 Lattice parameter alpha
beta Input number 90 Lattice parameter beta
gamma Input number 90 Lattice parameter gamma
LatticeSpacingMin Input number 0.5 Smallest allowed lattice spacing.
LatticeSpacingMax Input number 0 Largest allowed lattice spacing.
OutputWorkspace Output TableWorkspace Mandatory List with calculated peaks.

Description

This algorithm creates TableWorkspace with all symmetry independent reflections based on crystal structure and limits for lattice spacings. If a space group that belongs to a point group other than \bar{1} is specified, the lattice parameters supplied to the algorithm are corrected according to the crystal system:

Crystal system Lattice parameters used by the algorithm Constrained Cell
Triclinic a, b, c, \alpha, \beta, \gamma a, b, c, \alpha, \beta, \gamma
Monoclinic a, b, c, \beta a, b, c, 90^\circ, \beta, 90^\circ
Orthorhombic a, b, c a, b, c, 90^\circ, 90^\circ, 90^\circ
Tetragonal a, c a, a, c, 90^\circ, 90^\circ, 90^\circ
Hexagonal a, c a, a, c, 90^\circ, 90^\circ, 120^\circ
Trigonal a, \alpha a, a, a, \alpha, \alpha, \alpha
Cubic a a, a, a, 90^\circ, 90^\circ, 90^\circ

If other parameters are supplied, for example a = 2.0 and b = 5.0 with point group m\bar{3}m, these parameters are discarded by the algorithm. The resulting TableWorkspace can be used by other POLDI-related routines.

Usage

The following usage example illustrates how the algorithm can be used to generate a table of symmetry independent reflections for a given lattice, in this case using the crystal structure of CsCl.

# Generate all unique reflections for CsCl between 0.55 and 4.0 Angstrom
csClReflections = PoldiCreatePeaksFromCell(
                    SpaceGroup="P m -3 m",
                    Atoms="Cl 0 0 0 1.0 0.005; Cs 0.5 0.5 0.5 1.0 0.005",
                    a=4.126,
                    LatticeSpacingMin=0.55, LatticeSpacingMax=4.0)

print "CsCl has", csClReflections.rowCount(), "unique reflections in the range between 0.55 and 4.0 Angstrom."

Output:

CsCl has 68 unique reflections in the range between 0.55 and 4.0 Angstrom.

Categories: Algorithms | SINQ | Poldi