Table of Contents
Name | Direction | Type | Default | Description |
---|---|---|---|---|
SpaceGroup | Input | string | A e a 2 | SpaceGroup of the crystal structure. Allowed values: [‘A e a 2’, ‘A e m 2’, ‘A m a 2’, ‘A m m 2’, ‘C 1 2 1’, ‘C 1 2/c 1’, ‘C 1 2/m 1’, ‘C 1 c 1’, ‘C 1 m 1’, ‘C 2 2 2’, ‘C 2 2 21’, ‘C c c 2’, ‘C c c e’, ‘C c c m’, ‘C m c 21’, ‘C m c e’, ‘C m c m’, ‘C m m 2’, ‘C m m e’, ‘C m m m’, ‘F -4 3 c’, ‘F -4 3 m’, ‘F 2 2 2’, ‘F 2 3’, ‘F 4 3 2’, ‘F 41 3 2’, ‘F d -3’, ‘F d -3 c’, ‘F d -3 m’, ‘F d d 2’, ‘F d d d’, ‘F m -3’, ‘F m -3 c’, ‘F m -3 m’, ‘F m m 2’, ‘F m m m’, ‘I -4’, ‘I -4 2 d’, ‘I -4 2 m’, ‘I -4 3 d’, ‘I -4 3 m’, ‘I -4 c 2’, ‘I -4 m 2’, ‘I 2 2 2’, ‘I 2 3’, ‘I 21 21 21’, ‘I 21 3’, ‘I 4’, ‘I 4 2 2’, ‘I 4 3 2’, ‘I 4 c m’, ‘I 4 m m’, ‘I 4/m’, ‘I 4/m c m’, ‘I 4/m m m’, ‘I 41’, ‘I 41 2 2’, ‘I 41 3 2’, ‘I 41 c d’, ‘I 41 m d’, ‘I 41/a’, ‘I 41/a c d’, ‘I 41/a m d’, ‘I a -3’, ‘I a -3 d’, ‘I b a 2’, ‘I b a m’, ‘I b c a’, ‘I m -3’, ‘I m -3 m’, ‘I m a 2’, ‘I m m 2’, ‘I m m a’, ‘I m m m’, ‘P -1’, ‘P -3’, ‘P -3 1 c’, ‘P -3 1 m’, ‘P -3 c 1’, ‘P -3 m 1’, ‘P -4’, ‘P -4 2 c’, ‘P -4 2 m’, ‘P -4 21 c’, ‘P -4 21 m’, ‘P -4 3 m’, ‘P -4 3 n’, ‘P -4 b 2’, ‘P -4 c 2’, ‘P -4 m 2’, ‘P -4 n 2’, ‘P -6’, ‘P -6 2 c’, ‘P -6 2 m’, ‘P -6 c 2’, ‘P -6 m 2’, ‘P 1’, ‘P 1 2 1’, ‘P 1 2/c 1’, ‘P 1 2/m 1’, ‘P 1 21 1’, ‘P 1 21/c 1’, ‘P 1 21/m 1’, ‘P 1 c 1’, ‘P 1 m 1’, ‘P 2 2 2’, ‘P 2 2 21’, ‘P 2 3’, ‘P 21 21 2’, ‘P 21 21 21’, ‘P 21 3’, ‘P 3’, ‘P 3 1 2’, ‘P 3 1 c’, ‘P 3 1 m’, ‘P 3 2 1’, ‘P 3 c 1’, ‘P 3 m 1’, ‘P 31’, ‘P 31 1 2’, ‘P 31 2 1’, ‘P 32’, ‘P 32 1 2’, ‘P 32 2 1’, ‘P 4’, ‘P 4 2 2’, ‘P 4 21 2’, ‘P 4 3 2’, ‘P 4 b m’, ‘P 4 c c’, ‘P 4 m m’, ‘P 4 n c’, ‘P 4/m’, ‘P 4/m b m’, ‘P 4/m c c’, ‘P 4/m m m’, ‘P 4/m n c’, ‘P 4/n’, ‘P 4/n b m’, ‘P 4/n c c’, ‘P 4/n m m’, ‘P 4/n n c’, ‘P 41’, ‘P 41 2 2’, ‘P 41 21 2’, ‘P 41 3 2’, ‘P 42’, ‘P 42 2 2’, ‘P 42 21 2’, ‘P 42 3 2’, ‘P 42 c m’, ‘P 42 m c’, ‘P 42 n m’, ‘P 42/m’, ‘P 42/m b c’, ‘P 42/m c m’, ‘P 42/m m c’, ‘P 42/m n m’, ‘P 42/n’, ‘P 42/n b c’, ‘P 42/n c m’, ‘P 42/n m c’, ‘P 42/n n m’, ‘P 43’, ‘P 43 2 2’, ‘P 43 21 2’, ‘P 43 3 2’, ‘P 43 b c’, ‘P 6’, ‘P 6 2 2’, ‘P 6 c c’, ‘P 6 m m’, ‘P 6/m’, ‘P 6/m c c’, ‘P 6/m m m’, ‘P 61’, ‘P 61 2 2’, ‘P 62’, ‘P 62 2 2’, ‘P 63’, ‘P 63 2 2’, ‘P 63 c m’, ‘P 63 m c’, ‘P 63/m’, ‘P 63/m c m’, ‘P 63/m m c’, ‘P 64’, ‘P 64 2 2’, ‘P 65’, ‘P 65 2 2’, ‘P a -3’, ‘P b a 2’, ‘P b a m’, ‘P b a n’, ‘P b c a’, ‘P b c m’, ‘P b c n’, ‘P c a 21’, ‘P c c 2’, ‘P c c a’, ‘P c c m’, ‘P c c n’, ‘P m -3’, ‘P m -3 m’, ‘P m -3 n’, ‘P m a 2’, ‘P m c 21’, ‘P m m 2’, ‘P m m a’, ‘P m m m’, ‘P m m n’, ‘P m n 21’, ‘P m n a’, ‘P n -3’, ‘P n -3 m’, ‘P n -3 n’, ‘P n a 21’, ‘P n c 2’, ‘P n m a’, ‘P n n 2’, ‘P n n a’, ‘P n n m’, ‘P n n n’, ‘R -3’, ‘R -3 c’, ‘R -3 m’, ‘R 3’, ‘R 3 c’, ‘R 3 m’, ‘R 32’] |
Atoms | Input | string | Atoms in the asymmetric unit. Format: Element x y z Occupancy U; ... | |
a | Input | number | 1 | Lattice parameter a |
b | Input | number | 1 | Lattice parameter b |
c | Input | number | 1 | Lattice parameter c |
alpha | Input | number | 90 | Lattice parameter alpha |
beta | Input | number | 90 | Lattice parameter beta |
gamma | Input | number | 90 | Lattice parameter gamma |
LatticeSpacingMin | Input | number | 0.5 | Smallest allowed lattice spacing. |
LatticeSpacingMax | Input | number | 0 | Largest allowed lattice spacing. |
OutputWorkspace | Output | TableWorkspace | Mandatory | List with calculated peaks. |
This algorithm creates TableWorkspace with all symmetry independent reflections based on crystal structure and limits for lattice spacings. If a space group that belongs to a point group other than is specified, the lattice parameters supplied to the algorithm are corrected according to the crystal system:
Crystal system | Lattice parameters used by the algorithm | Constrained Cell |
---|---|---|
Triclinic | , , , , , | , , , , , |
Monoclinic | , , , | , , , , , |
Orthorhombic | , , | , , , , , |
Tetragonal | , | , , , , , |
Hexagonal | , | , , , , , |
Trigonal | , | , , , , , |
Cubic | , , , , , |
If other parameters are supplied, for example a = 2.0 and b = 5.0 with point group , these parameters are discarded by the algorithm. The resulting TableWorkspace can be used by other POLDI-related routines.
The following usage example illustrates how the algorithm can be used to generate a table of symmetry independent reflections for a given lattice, in this case using the crystal structure of CsCl.
# Generate all unique reflections for CsCl between 0.55 and 4.0 Angstrom
csClReflections = PoldiCreatePeaksFromCell(
SpaceGroup="P m -3 m",
Atoms="Cl 0 0 0 1.0 0.005; Cs 0.5 0.5 0.5 1.0 0.005",
a=4.126,
LatticeSpacingMin=0.55, LatticeSpacingMax=4.0)
print "CsCl has", csClReflections.rowCount(), "unique reflections in the range between 0.55 and 4.0 Angstrom."
Output:
CsCl has 68 unique reflections in the range between 0.55 and 4.0 Angstrom.
Categories: Algorithms | SINQ | Poldi