QueryMDWorkspace v1

../_images/QueryMDWorkspace-v1_dlg.png

QueryMDWorkspace dialog.

Summary

Query the IMDWorkspace in order to extract summary information.

Properties

Name Direction Type Default Description
InputWorkspace Input IMDWorkspace Mandatory An input MDWorkspace.
OutputWorkspace Output TableWorkspace Mandatory The output Tableworkspace with columns containing key summary information about the MDWorkspace.
LimitRows Input boolean True Limit the report output to a maximum number of rows
MaximumRows Input number 100000 The number of neighbours to utilise. Defaults to 100000.
Normalisation Input string none What normalisation do you wish to apply none: No normalisation. volume: Normalise by the volume. number of events: Normalise by the number of events. Allowed values: [‘none’, ‘volume’, ‘number of events’]
TransformCoordsToOriginal Input boolean True Output box coordinates in terms of original workspace coordinates
BoxDataTable Output TableWorkspace   Optional output data table with MDEventWorkspace-specific box data.

Description

This algorithm outputs a table workspace containing summary data about each box within an IMDWorkspace. The table workspace can be used as a basis for plotting within MantidPlot.

Format

  • Column 1: Signal (double)
  • Column 2: Error (double)
  • Column 3: Number of Events (integer)
  • Column 4: Coords of box center (string)

Usage

Example - query MD workspace and look at the result:

# create sample inelastic workspace for MARI instrument containing 1 at all spectra
ws1=CreateSimulationWorkspace(Instrument='MAR',BinParams='-10,1,10',UnitX='DeltaE')
AddSampleLog(ws1,'Ei','12.','Number')
ws2=ws1*2;
# Convert to MD
mdWs1 =ConvertToMD(InputWorkspace=ws1,QDimensions='|Q|',QConversionScales='Q in A^-1',SplitInto='10,10',MaxRecursionDepth='1')

# get the query
table = QueryMDWorkspace(InputWorkspace=mdWs1)

# look at the output:
col_names=table.keys();
name0=col_names[0];
nRows = len(table.column(name0));
print "Table contains {0} rows".format(nRows)
print "first 11 of them are:"
print '{0}'.format("--------------------------------------------------------------------------------------------------------------")
for name in col_names:
   print '| {0:19}'.format(name),
print '|'
print '{0}'.format("--------------------------------------------------------------------------------------------------------------")
for i in xrange(0,11):
  for name in col_names:
     col = table.column(name);
     print '| {0:>19.4f}'.format(col[i]),
  print '|'

Output:

Table contains 100 rows
first 11 of them are:
--------------------------------------------------------------------------------------------------------------
| Signal/none         | Error/none          | Number of Events    | |Q|/MomentumTransfer | DeltaE/DeltaE       |
--------------------------------------------------------------------------------------------------------------
|              0.0000 |              0.0000 |              0.0000 |              0.3982 |             -9.0000 |
|            338.0000 |              0.0000 |            338.0000 |              0.9065 |             -9.0000 |
|            164.0000 |              0.0000 |            164.0000 |              1.4149 |             -9.0000 |
|            164.0000 |              0.0000 |            164.0000 |              1.9233 |             -9.0000 |
|            153.0000 |              0.0000 |            153.0000 |              2.4317 |             -9.0000 |
|            162.0000 |              0.0000 |            162.0000 |              2.9401 |             -9.0000 |
|            171.0000 |              0.0000 |            171.0000 |              3.4485 |             -9.0000 |
|            195.0000 |              0.0000 |            195.0000 |              3.9568 |             -9.0000 |
|            231.0000 |              0.0000 |            231.0000 |              4.4652 |             -9.0000 |
|            258.0000 |              0.0000 |            258.0000 |              4.9736 |             -9.0000 |
|             28.0000 |              0.0000 |             28.0000 |              0.3982 |             -7.0000 |

Categories: Algorithms | MDAlgorithms