Table of Contents
Crops an event workspace and store the information about trajectories limits in the run object.
Name | Direction | Type | Default | Description |
---|---|---|---|---|
InputWorkspace | Input | IEventWorkspace | Mandatory | Input workspace. It has to be an event workspace with units of energy transfer or momentum |
XMin | Input | number | Mandatory | Minimum energy transfer or momentum |
XMax | Input | number | Mandatory | Maximum energy transfer or momentum |
OutputWorkspace | Output | Workspace | Mandatory | Output workspace |
This algorithm is part of the new workflow for normalizing multi-dimensional event workspaces. It is intended to crop the input event workspace, and store the end of detector trajectories in either momentum (diffraction) or energy transfer (inelastic) units.
Example - CropWorkspaceForMDNorm
ws_in = CreateSampleWorkspace(WorkspaceType='Event',
Function='Flat background',
XUnit='Momentum',
XMax=10,
BinWidth=0.1)
ws_out = CropWorkspaceForMDNorm(InputWorkspace=ws_in,
XMin=1,
XMax=6)
print("Number of events in the original workspace {0}".format(ws_in.getNumberEvents()))
print("Number of events in the cropped workspace {0}".format(ws_out.getNumberEvents()))
print("Largest momentum in the output workspace {0}".format(round(ws_out.getSpectrum(1).getTofs().max())))
Number of events in the original workspace 200000
Number of events in the cropped workspace 100000
Largest momentum in the output workspace 6.0
Categories: Algorithm Index | Utility\Workspaces | MDAlgorithms\Normalisation
Python: CropWorkspaceForMDNorm.py (last modified: 2019-01-25)