Table of Contents
Computes the most likely mean of the array by minimizing the taxicab distance of the elements from the rest.
| Name | Direction | Type | Default | Description |
|---|---|---|---|---|
| InputArray | Input | dbl list | Mandatory | An input array. |
| Output | Output | number | The output (mean). |
This algorithm finds a so-called most-likely mean of an array being the element that has the minimum of the summed square-rooted absolute distances with all the other elements in the array:
![MostLikelyMean(a) = a[minindex_{j}\sum_{i} \sqrt{|a_{i} - a_{j}|}]](../_images/math/d677d0a006f6fb58b38f152b43805d549c2fc733.png)
Example - MostLikelyMean
import numpy
array = numpy.arange(100)
mlm = MostLikelyMean(array)
print(mlm)
Output:
49.0
Categories: AlgorithmIndex | Arithmetic
C++ header: MostLikelyMean.h (last modified: 2018-10-05)
C++ source: MostLikelyMean.cpp (last modified: 2019-07-17)