IkedaCarpenterConvoluted

Description

This function is an Ikeda-Carpenter function convolved with a tophat function and a Gaussian function. The Ikeda-Carpenter function is given by:

V =  Scale \times \Big\{ (1-R)(\alpha t')^2 e^{-\alpha t'} + 2R\frac{\alpha^2 \beta}{(\alpha-\beta)^3} \times
\big[ e^{-\beta t'} - e^{-\alpha t'}  (1 + (\alpha - \beta)t' + \frac{1}{2}(\alpha-\beta)^2t'^2) \big]    \Big\}

This is convolved with a tophat function (of width hatWidth) and a Gaussian function exp(-k_{conv} t^2).

There are no attributes for this function.

Properties (fitting parameters)

Name Default Description
A 0.0  
B 0.0  
R 0.0  
T0 0.0  
Scale 0.0  
HatWidth 0.0  
KConv 0.0  

See Ikeda, S. & Carpenter, J.M. (1985). Nuclear Instruments and Methods in Physics Research Section A 239, 536-544 for additional details on parameters

Usage

Here is an example of generating an Ikeda-Carpenter function:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
import numpy as np
import matplotlib.pyplot as plt
fICC = IkedaCarpenterConvoluted()
fICC['scale'] = 1.0
fICC['A'] = 0.1
fICC['B'] = 1.e-2
fICC['R'] = 0.3
fICC['T0'] = 27000.
fICC['hatWidth'] = 0.5
fICC['k_conv'] = 120.

x = np.linspace(26000, 28000,100)
y = fICC(x)
plt.plot(x,y)

Categories: FitFunctions | General

Source

Python: ICConvoluted.py (last modified: 2020-03-27)