\(\renewcommand\AA{\unicode{x212B}}\)

Keren

Description

Keren’s generalization of the Abragam relaxation function to a longitudinal field, for fitting the time-dependent muon polarization.

The function is derived in *Phys Rev B, vol. 50, 14, 10039-42 (1994)* and is given by

\[P_z(t) = A\exp\left[-\Gamma(t)t\right]\]

where the relaxation rate \(\Gamma(t)\) is

\[\Gamma(t)t = 2\Delta^2 \frac{\left\{\left(\omega_L^2 + \nu^2\right)\nu t + \left(\omega_L^2-\nu^2\right)\left(1-e^{-\nu t}\cos(\omega_L t)\right) - 2\nu\omega_L e^{-\nu t}\sin(\omega_L t)\right\}}{\left(\omega_L^2 + \nu^2\right)^2}\]

\(A = P_z(0)\) is the polarization at time zero, \(\nu\) is the fluctuation rate (inverse correlation time), \(\Delta\) is the distribution width of the local fields and \(\omega_L\) is the Larmor frequency (longitudinal field times muon gyromagnetic ratio).

Properties (fitting parameters)

Name Default Description
A 1.0 Polarization at time zero
Delta 0.2 Distribution width of local fields (MHz)
Field 50.0 Longitudinal field (Gauss)
Fluct 0.2 Hopping rate (inverse correlation time, MHz)

Categories: FitFunctions | Muon\MuonSpecific

Source

C++ header: Keren.h (last modified: 2020-03-20)

C++ source: Keren.cpp (last modified: 2020-03-20)