\(\renewcommand\AA{\unicode{x212B}}\)
This is a Python binding to the C++ class Mantid::Geometry::OrientedLattice. The methods on this class follow naming conventions for parameters as defined in the International Tables for Crystallography. See also the note about orientation.
bases: mantid.geometry.UnitCell
mantid.geometry.
OrientedLattice
¶a
((UnitCell)self) → float :¶Returns the length of the \(a\) direction of the unit cell in \(\rm{\AA}\).
a1
((UnitCell)self) → float :¶Returns the length of the \(a_{1} = a\) direction of the unit cell. This is an alias for a()
.
a2
((UnitCell)self) → float :¶Returns the length of the \(a_{2} = b\) direction of the unit cell. This is an alias for b()
.
a3
((UnitCell)self) → float :¶Returns the length of the \(a_{2} = c\) direction of the unit cell. This is an alias for c()
.
alpha
((UnitCell)self) → float :¶Returns the \(\alpha\) angle for this unit cell in degrees.
alpha1
((UnitCell)self) → float :¶Returns the \(\alpha_{1} = \alpha\) angle of the unit cell in radians. See also alpha()
.
alpha2
((UnitCell)self) → float :¶Returns the \(\alpha_{2} = \beta\) angle of the unit cell in radians. See also beta()
.
alpha3
((UnitCell)self) → float :¶Returns the \(\alpha_{3} = \gamma\) angle of the unit cell in radians. See also gamma()
.
alphastar
((UnitCell)self) → float :¶Returns the reciprocal \(\alpha\) angle for this unit cell in degrees.
astar
((UnitCell)self) → float :¶Returns the length of the reciprocal \(a\) direction for this unit cell in reciprocal \(\rm{\AA}\).
b
((UnitCell)self) → float :¶Returns the length of the \(b\) direction of the unit cell in \(\rm{\AA}\).
b1
((UnitCell)self) → float :¶Returns the length of the \(b_{1} = a^{*}\) direction of the unit cell. This is an alias for astar()
.
b2
((UnitCell)self) → float :¶Returns the length of the \(b_{2} = b^{*}\) direction of the unit cell. This is an alias for bstar()
.
b3
((UnitCell)self) → float :¶Returns the length of the \(b_{3} = c^{*}\) direction of the unit cell. This is an alias for cstar()
.
beta
((UnitCell)self) → float :¶Returns the \(\beta\) angle for this unit cell in degrees.
beta1
((UnitCell)self) → float :¶Returns the \(\beta_{1} = \alpha^{*}\) angle of the unit cell in radians. See also alphastar()
.
beta2
((UnitCell)self) → float :¶Returns the \(\beta_{2} = \beta^{*}\) angle of the unit cell in radians. See also betastar()
.
beta3
((UnitCell)self) → float :¶Returns the \(\beta_{3} = \gamma^{*}\) angle of the unit cell in radians. See also gammastar()
.
betastar
((UnitCell)self) → float :¶Returns the \(\beta^{*}\) angle for this unit cell in degrees.
bstar
((UnitCell)self) → float :¶Returns the length of the \(b^{*}\) direction for this unit cell in reciprocal \(\rm{\AA}\).
c
((UnitCell)self) → float :¶Returns the length of the \(c\) direction of the unit cell in \(\rm{\AA}\).
cstar
((UnitCell)self) → float :¶Returns the length of the \(c^{*}\) direction for this unit cell in reciprocal \(\rm{\AA}\).
d
((UnitCell)self, (float)h, (float)k, (float)l) → float :¶Returns \(d\)-spacing for a given H, K, L coordinate in \(\rm{\AA}\).
dstar
((UnitCell)self, (float)h, (float)k, (float)l) → float :¶Returns \(d^{*} = 1/d\) for a given H, K, L coordinate in \(\rm{\AA}^{3}\).
errora
((UnitCell)self) → float :¶Returns the error in the \(a\) unit cell length.
erroralpha
((UnitCell)self[, (int)Unit=0]) → float :¶Returns the error in the \(\alpha\) angle of the unit cell.
errorb
((UnitCell)self) → float :¶Returns the error in the \(b\) unit cell length.
errorbeta
((UnitCell)self[, (int)Unit=0]) → float :¶Returns the error in \(\beta\) angle of the unit cell.
errorc
((UnitCell)self) → float :¶Returns the error in the \(c\) unit cell length.
errorgamma
((UnitCell)self[, (int)Unit=0]) → float :¶Returns the error in \(\gamma\) angle of the unit cell.
gamma
((UnitCell)self) → float :¶Returns the \(\gamma\) angle for this unit cell in degrees.
gammastar
((UnitCell)self) → float :¶Returns the \(\gamma^{*}\) angle for this unit cell in degrees.
getB
((UnitCell)self) → numpy.ndarray :¶Returns the \(B\) matrix for this unit cell. This will be in a right-handed coordinate system and using the Busing-Levy convention. This will return a numpy.ndarray
with shape (3,3)
.
getBinv
((UnitCell)self) → numpy.ndarray :¶Returns the inverse of the \(B\) matrix for this unit cell.This will return a numpy.ndarray
with shape (3,3)
. See also getB()
.
getG
((UnitCell)self) → numpy.ndarray :¶Returns the metric tensor for the unit cell. This will return a numpy.ndarray
with shape (3,3)
.
getGstar
((UnitCell)self) → numpy.ndarray :¶Returns the metric tensor for the reciprocal unit cell. This will return a numpy.ndarray
with shape (3,3)
.
getMaxOrder
((UnitCell)self) → int :¶Returns the number of modulation vectors. This will return an int.
getModHKL
((UnitCell)self) → numpy.ndarray :¶Returns the \(ModHKL\) matrix for this unit cell. This will be in a right-handed coordinate system and using the Busing-Levy convention. This will return a numpy.ndarray
with shape (3,3)
.
getModUB
((OrientedLattice)self) → numpy.ndarray :¶Returns the \(ModUB\) matrix for this oriented lattice. This will return a numpy.ndarray
with shape (3,3)
.
getModVec
((UnitCell)self, (int)i) → V3D :¶Returns the ith modulation vector
getU
((OrientedLattice)self) → numpy.ndarray :¶Returns the \(U\) rotation matrix. This will return a numpy.ndarray
with shape (3,3)
.
getUB
((OrientedLattice)self) → numpy.ndarray :¶Returns the \(UB\) matrix for this oriented lattice. This will return a numpy.ndarray
with shape (3,3)
.
getuVector
((OrientedLattice)self) → V3D :¶Returns the vector along the beam direction when Goniometer
s are at 0.
getvVector
((OrientedLattice)self) → V3D :¶Returns the vector along the horizontal plane, perpendicular to the beam direction when Goniometer
s are at 0.
hklFromQ
((OrientedLattice)self, (object)vec) → V3D :¶\(HKL\) value from \(Q\) vector
qFromHKL
((OrientedLattice)self, (object)vec) → V3D :¶\(Q\) vector from \(HKL\) vector
recAngle
((UnitCell)self, (float)h1, (float)k1, (float)l1, (float)h2, (float)k2, (float)l2[, (int)Unit=0]) → float :¶Returns the angle in reciprocal space between vectors given by (\(h_1, k_1, l_1\)) and (\(h_2, k_2, l_2\)) (in degrees or radians). The optional parameter Unit
controls the units for the angles, and can have the value of Degrees
or Radians
. By default Unit = Degrees
recVolume
((UnitCell)self) → float :¶Return the volume of the reciprocal unit cell (in \(\rm{\AA}^{-3}\))
recalculateFromGstar
((UnitCell)self, (object)NewGstar) → None :¶Recalculate the unit cell parameters from a metric tensor. This method accepts a numpy.ndarray
with shape (3,3)
.
set
((UnitCell)self, (float)_a, (float)_b, (float)_c, (float)_alpha, (float)_beta, (float)_gamma[, (int)Unit=0]) → None :¶Set the parameters of the unit cell. Angles can be set in eitherdegrees or radians using the Unit
parameter (0 = degrees, 1 = radians)
setError
((UnitCell)self, (float)_aerr, (float)_berr, (float)_cerr, (float)_alphaerr, (float)_betaerr, (float)_gammaerr[, (int)Unit=0]) → None :¶Set the errors in the unit cell parameters.
setErrora
((UnitCell)self, (float)_aerr) → None :¶Set the error in the length of the \(a\) direction of the unit cell.
setErroralpha
((UnitCell)self, (float)_alphaerr[, (int)Unit=0]) → None :¶Set the error in the \(\alpha\) angle of the unit cell.
setErrorb
((UnitCell)self, (float)_berr) → None :¶Set the error in the length of the \(b\) direction of the unit cell.
setErrorbeta
((UnitCell)self, (float)_betaerr[, (int)Unit=0]) → None :¶Set the error in the \(\beta\) angle of the unit cell using the Unit
parameter.
setErrorc
((UnitCell)self, (float)_cerr) → None :¶Set the error in the length of the \(c\) direction of the unit cell.
setErrorgamma
((UnitCell)self, (float)_gammaerr[, (int)Unit=0]) → None :¶Set the error in the \(\gamma\) angle of the unit cell using the Unit
parameter.
setMaxOrder
((UnitCell)arg1, (int)arg2) → None :¶Set the maximum order of modulated vectors searched
setModUB
((OrientedLattice)self, (object)newModUB) → None :¶Set the \(ModUB\) matrix. This methiod will calculate first the lattice parameters, then the \(B\) matrix, and then \(U\). This method expects a numpy.ndarray
with shape (3,3)
.
setModVec1
((UnitCell)self, (V3D)vec) → None :¶Set the first modulated structure vector
setModVec2
((UnitCell)self, (V3D)vec) → None :¶Set the second modulated structure vector
setModVec3
((UnitCell)self, (V3D)vec) → None :¶Set the third modulated structure vector
setU
((OrientedLattice)self, (object)newU[, (bool)force=True]) → None :¶Set the \(U\) rotation matrix. This method expects a numpy.ndarray
with shape (3,3)
.
setUB
((OrientedLattice)self, (object)newUB) → None :¶Set the \(UB\) matrix. This methiod will calculate first the lattice parameters, then the \(B\) matrix, and then \(U\). This method expects a numpy.ndarray
with shape (3,3)
.
setUFromVectors
((OrientedLattice)self, (object)u, (object)v) → None :¶Set the \(U\) rotation matrix using two vectors to define a new coordinate system. This method with return the new \(U\) matrix as a numpy.ndarray
with shape (3,3)
.
seta
((UnitCell)self, (float)_a) → None :¶Set the length of the \(a\) direction of the unit cell.
setalpha
((UnitCell)self, (float)_alpha[, (int)Unit=0]) → None :¶Set the \(\alpha\) angle of the unit cell. The angle can be set either in degrees or radians using the Unit
parameter.
setb
((UnitCell)self, (float)_b) → None :¶Set the length of the \(b\) direction of the unit cell.
setbeta
((UnitCell)self, (float)_beta[, (int)Unit=0]) → None :¶Set the \(\beta\) angle of the unit cell. The angle can be set either in degrees or radians using the Unit
parameter.
setc
((UnitCell)self, (float)_c) → None :¶Set the length of the \(c\) direction of the unit cell.
setgamma
((UnitCell)self, (float)_gamma[, (int)Unit=0]) → None :¶Set the \(\gamma\) angle of the unit cell. The angle can be set either in degrees or radians using the Unit
parameter.
volume
((UnitCell)self) → float :¶Return the volume of the unit cell (in \(\rm{\AA}{^3}\))