\(\renewcommand\AA{\unicode{x212B}}\)

AFMLF

Description

A pair of frequencies for aligned Anti-ferrormagnetic magnetism in Longitudinal Fields.

\[A(t) = \frac{A_0}{2}((1-a_1)+a_1\cos(\omega_1t+\phi))+(1-a_2)+a_2\cos(\omega_2t+\phi))\]

where,

\[a_1 =\frac{(f_a\sin\theta)^2}{(f_b+f_a\cos\theta)^2+(f_a\sin\theta)^2} ,\]
\[a_2 =\frac{(f_a\sin\theta)^2}{((f_b-f_a\cos\theta)^2+(f_a\sin\theta)^2)} ,\]
\[\omega_1 = 2\pi\sqrt{f_a^2+f_b^2+2f_af_b\cos\theta} ,\]
\[\omega_2 = 2\pi\sqrt{f_a^2+f_b^2-2f_af_b\cos\theta} ,\]

\(f_a\) is the ZF frequency (MHz),

\(f_b = 0.01355 B\) for B is the applied field,

\(\theta\) is the angle of internal field w.r.t. to applied field,

and \(\phi\) is the phase.

(Source code, png, hires.png, pdf)

../../_images/AFMLF-1.png

Properties (fitting parameters)

Name Default Description
A0 0.2 Amplitude
Freq 2.0 ZF Frequency (MHz)
Angle 50.0 Angle of internal field w.r.t. to applied field (degrees)
Field 10.0 Applied Field (G)
Phi 0.0 Phase (rad)

Source

Python: AFMLF.py (last modified: 2020-03-20)