\(\renewcommand\AA{\unicode{x212B}}\)

DampedBessel

Description

A bessel function with damped oscillation that could apply to incommensurate magnetic structures or spin density waves.

\[A(t)= A_0e^{-\lambda_\text{L}t}\left( (1-f_L)e^{-\lambda_\text{T}t}J_0(\omega_\mu t + \phi) + f_L\right)\]

where,

\(A_0\) is the amplitude of asymmetry,

\(J_0(x)\) is the Bessel function of the first kind,

\(\lambda_\text{T}\) is the damping of the oscillation,

\(\lambda_\text{L}\) is the dynamic longitudinal spin relaxation rate,

\(B\) (G) is the B-field,

and \(\phi\) is the phase.

(Source code, png, hires.png, pdf)

../../_images/DampedBessel-1.png

Properties (fitting parameters)

Name Default Description
A0 0.2 Asymmetry
Phi 0.0 Phase (rad)
Field 10.0 B Field (G)
LambdaL 0.1 Dynamic longitudinal spin relaxation rate
LambdaT 0.1 Damping of the oscillation
FractionL 0.1 Fraction of longitudinal signal component

Source

Python: DampedBessel.py (last modified: 2020-03-20)