\(\renewcommand\AA{\unicode{x212B}}\)

GauBroadGauKT

Description

Gaussian-Broadened Gaussian Kubo-Toyabe relaxation function given by:

\[A(t)=A_0\left(\frac{1}{3}+\frac{2}{3}\left(\frac{1+R^2}{1+R^2+R^2\Delta^2_\text{eff}t^2}\right)^{\frac{3}{2}}\left(1- \frac{\Delta^2_\text{eff}t^2}{1+R^2+R^2\Delta^2_\text{eff}t^2}\right)exp\left(\frac{-\Delta^2_\text{eff}t^2}{2(1+R^2+R^2\Delta^2_\text{eff}t^2)}\right)\right)\]

where \(R\) and \(\Delta^2_\text{eff}\) are defined by,

\[R = \frac{\omega}{\Delta_0},\]
\[\Delta^2_\text{eff} = \Delta^2_0 + \omega^2,\]

where,

\(A_0\) is the amplitude,

\(R\) the Broadening ratio,

\(\Delta_0\) is the central width,

\(\omega\) is the rms width,

and \(\Delta_{eff}\) is the effective width.

(Source code, png, hires.png, pdf)

../../_images/GauBroadGauKT-1.png

Properties (fitting parameters)

Name Default Description
A0 0.2  
R 0.1 Broadening ratio
Delta0 0.1 Central Field width

Source

Python: GauBroadGauKT.py (last modified: 2020-03-20)