\(\renewcommand\AA{\unicode{x212B}}\)

GaussBessel

Description

Bessel function oscillation with Gaussian damp \(\frac{1}{3}\) component. Example: Spin Density Wave.

\[A(t) = A_0\left(\frac{1}{3}+\frac{2}{3}J_0(\omega t + \phi)e^{-\frac{(\sigma t)^2}{2}}\right)\]

where,

\(N_O\) is the count at \(t=0\) ,

\(\sigma\) (MHz) is the Gaussian relaxation rate,

\(\omega = 2\pi \nu\) is the oscillating frequency,

\(\nu\) (MHz) is the oscillation frequency,

and \(\phi\) is the phase.

(Source code, png, hires.png, pdf)

../../_images/GaussBessel-1.png

Properties (fitting parameters)

Name Default Description
A0 0.2 Amplitude
Freq 0.5 ZF Frequency (MHz)
Sigma 0.2 Gaussian relaxation for oscillatory component
Phi 0.0 Phase (rad)

Source

Python: GaussBessel.py (last modified: 2020-03-20)