MSDFit v1¶
Summary¶
Fits Intensity vs Q for 3 models to obtain the mean squared displacement.
Properties¶
Name |
Direction |
Type |
Default |
Description |
---|---|---|---|---|
InputWorkspace |
Input |
Mandatory |
Sample input workspace |
|
Model |
Input |
string |
Gauss |
Model options : Gauss, Peters, Yi. Allowed values: [‘Gauss’, ‘Peters’, ‘Yi’] |
XStart |
Input |
number |
0 |
Start of fitting range |
XEnd |
Input |
number |
0 |
End of fitting range |
SpecMin |
Input |
number |
0 |
Start of spectra range to be fit |
SpecMax |
Input |
number |
0 |
End of spectra range to be fit |
OutputWorkspace |
Output |
Mandatory |
Output mean squared displacement |
|
ParameterWorkspace |
Output |
Output fit parameters table |
||
FitWorkspaces |
Output |
WorkspaceGroup |
Output fitted workspaces |
Description¶
Fits
This algorithm operates on the
The model used for obtaining the mean squared displacement can be selected. These models include ‘Gaussian’, ‘Peters’, ‘Yi’.
Workflow¶

diagram generation was disabled¶
Usage¶
Example - Performing MSDFit on simulated data.
# Create some data that is similar to the output of ElasticWindowMultiple
sample = CreateSampleWorkspace(Function='User Defined',
UserDefinedFunction='name=ExpDecay,Height=1,Lifetime=6',
NumBanks=1, BankPixelWidth=1, XUnit='momentum', XMin=0.0,
XMax=5.0, BinWidth=0.1)
g_msd, g_param, g_fit = MSDFit(InputWorkspace=sample,
Model="Gauss",
XStart=0.0, XEnd=5.0,
SpecMin=0, SpecMax=0)
y_msd, y_param, y_fit = MSDFit(InputWorkspace=sample,
Model="Yi",
XStart=0.0, XEnd=5.0,
SpecMin=0, SpecMax=0)
print('Using Gauss Model')
print('A0: ' + str(g_msd.readY(0)))
print('A1: ' + str(g_msd.readY(1)))
print('Using Yi Model')
print('A0: ' + str(y_msd.readY(0)))
print('A1: ' + str(y_msd.readY(1)))
Output (the numbers on your machine my not match exactly):
Using Gauss Model
A0: [ ...]
A1: [ ...]
Using Yi Model
A0: [ ...]
A1: [ ...]
Categories: AlgorithmIndex | Workflow\MIDAS
Source¶
Python: MSDFit.py