\(\renewcommand\AA{\unicode{x212B}}\)
AFMLF¶
Description¶
A pair of frequencies for aligned Anti-ferrormagnetic magnetism in Longitudinal Fields.
\[A(t) = \frac{A_0}{2}((1-a_1)+a_1\cos(\omega_1t+\phi))+(1-a_2)+a_2\cos(\omega_2t+\phi))\]
where,
\[a_1 =\frac{(f_a\sin\theta)^2}{(f_b+f_a\cos\theta)^2+(f_a\sin\theta)^2} ,\]
\[a_2 =\frac{(f_a\sin\theta)^2}{((f_b-f_a\cos\theta)^2+(f_a\sin\theta)^2)} ,\]
\[\omega_1 = 2\pi\sqrt{f_a^2+f_b^2+2f_af_b\cos\theta} ,\]
\[\omega_2 = 2\pi\sqrt{f_a^2+f_b^2-2f_af_b\cos\theta} ,\]
\(f_a\) is the ZF frequency (MHz),
\(f_b = 0.01355 B\) for B is the applied field,
\(\theta\) is the angle of internal field w.r.t. to applied field,
and \(\phi\) is the phase.
Enable :plots: using DOCS_PLOTDIRECTIVE in CMake
Properties (fitting parameters)¶
Name |
Default |
Description |
---|---|---|
A0 |
0.2 |
Amplitude |
Freq |
2.0 |
ZF Frequency (MHz) |
Angle |
50.0 |
Angle of internal field w.r.t. to applied field (degrees) |
Field |
10.0 |
Applied Field (G) |
Phi |
0.0 |
Phase (rad) |
References¶
[1] F.L. Pratt, Physica B 289-290, 710 (2000).
Categories: FitFunctions | Muon\MuonSpecific
Source¶
Python: AFMLF.py