\(\renewcommand\AA{\unicode{x212B}}\)
Table of Contents
Calculate an efficiency correction using various inputs. Can be used to determine an incident spectrum after correcting a measured spectrum from beam monitors or vanadium measurements.
Name | Direction | Type | Default | Description |
---|---|---|---|---|
InputWorkspace | Input | MatrixWorkspace | Input workspace with wavelength range to calculate for the correction. | |
WavelengthRange | Input | string | Wavelength range to calculate efficiency for. | |
OutputWorkspace | Output | MatrixWorkspace | Mandatory | Output workspace for the efficiency correction. This can be applied by multiplying the OutputWorkspace to the workspace that requires the correction. |
ChemicalFormula | Input | string | None | Sample chemical formula used to determine cross-section term. |
DensityType | Input | string | Mass Density | Use of Mass density (g/cm^3) or Number density (atoms/Angstrom^3). Allowed values: [‘Mass Density’, ‘Number Density’] |
Density | Input | number | 0 | Mass density (g/cm^3) or Number density (atoms/Angstrom^3). |
Thickness | Input | number | 1 | Sample thickness (cm). |
MeasuredEfficiency | Input | number | 0 | Directly input the efficiency measured at MeasuredEfficiencyWavelength. This is used to determine a Density*Thickness term. |
MeasuredEfficiencyWavelength | Input | number | 1.7982 | The wavelength at which the MeasuredEfficiency was measured. |
Alpha | Input | number | 0 | Directly input the alpha term in exponential to multiply by the wavelength. XSectionType has no effect if this is used. |
XSectionType | Input | string | AttenuationXSection | Use either the absorption or total cross section in exponential term. The absorption cross section is for monitor-type corrections and the total cross section is for transmission-type corrections. Allowed values: [‘AttenuationXSection’, ‘TotalXSection’] |
This algorithm calculates the detection efficiency correction, \(\epsilon\), defined by:
and output correction is given as:
where
XSectionType
== AttenuationXSection
where \(\sigma_a\) is the absorption cross-section in units of barnsXSectionType
== TotalXSection
where \(\sigma_s\) is the total scattering cross-section in units of barnsNOTE: \(1 \AA^2 = 10^{8}\) barns and \(1 \AA = 10^{-8}\) cm.
Alpha
parameterDensity
and ChemicalFormula
to calculate the \(\sigma(\lambda_{ref})\) term.MeasuredEfficiency
, an optional MeasuredEfficiencyWavelength
, and ChemicalFormula
to calculate the \(\sigma(\lambda_{ref})\) term.The MeasuredEfficiency
is the \(\epsilon\) term measured at a specific wavelength, \(\lambda_{\epsilon}\), which is specified by MeasuredEfficiencyWavelength
. This helps
if the efficiency has been directly measured experimentally at a given wavelength. This will calculate the
\(\rho * T\) term, where it will be either:
XSectionType
== AttenuationXSection
XSectionType
== TotalXSection
For the XSectionType
, if the efficiency correction is applied to a beam monitor to determine the incident spectrum, then the AttenuationXSection
option should be used. This is due to the fact that scatter events do not lead to neutrons that will be in the incident beam. If the efficiency correction is to be used similar to a transmission measurement for an actual sample measurement, such as in CalculateSampleTransmission v1, then the TotalXSection
should be used to include both types of events.
Example - Basics of running CalculateEfficiencyCorrection with Alpha.
# Create an exponentially decaying function in wavelength to simulate measured sample
input_wksp = CreateSampleWorkspace(WorkspaceType="Event", Function="User Defined",
UserDefinedFunction="name=ExpDecay, Height=100, Lifetime=4",
Xmin=0.2, Xmax=4.0, BinWidth=0.01, XUnit="Wavelength",
NumEvents=10000, NumBanks=1, BankPixelWidth=1)
# Calculate the efficiency correction
corr_wksp = CalculateEfficiencyCorrection(InputWorkspace=input_wksp, Alpha=0.5)
corr_wksp_with_wave_range = CalculateEfficiencyCorrection(WavelengthRange="0.2,0.01,4.0", Alpha=0.5)
# Apply the efficiency correction to the measured spectrum
input_wksp = ConvertToPointData(InputWorkspace=input_wksp)
output_wksp = Multiply(LHSWorkspace=input_wksp, RHSWorkspace=corr_wksp)
output_wksp_with_wave_range = Multiply(LHSWorkspace=input_wksp, RHSWorkspace=corr_wksp_with_wave_range)
print('Input workspace: {}'.format(input_wksp.readY(0)[:5]))
print('Correction workspace: {}'.format(corr_wksp.readY(0)[:5]))
print('Output workspace: {}'.format(output_wksp.readY(0)[:5]))
print('Output workspace using WavelengthRange: {}'.format(output_wksp_with_wave_range.readY(0)[:5]))
Ouptut:
Input workspace: [ 40. 40. 40. 40. 40.]
Correction workspace: [ 10.26463773 9.81128219 9.39826191 9.02042771 8.67347109]
Output workspace: [ 410.58550929 392.45128759 375.93047648 360.81710849 346.93884349]
Output workspace using WavelengthRange: [ 410.58550929 392.45128759 375.93047648 360.81710849 346.93884349]
Example - Basics of running CalculateEfficiencyCorrection with Density and ChemicalFormula.
# Create an exponentially decaying function in wavelength to simulate measured sample
input_wksp = CreateSampleWorkspace(WorkspaceType="Event", Function="User Defined",
UserDefinedFunction="name=ExpDecay, Height=100, Lifetime=4",
Xmin=0.2, Xmax=4.0, BinWidth=0.01, XUnit="Wavelength",
NumEvents=10000, NumBanks=1, BankPixelWidth=1)
# Calculate the efficiency correction
corr_wksp = CalculateEfficiencyCorrection(InputWorkspace=input_wksp,
Density=6.11,
ChemicalFormula="V")
corr_wksp_with_wave_range = CalculateEfficiencyCorrection(WavelengthRange="0.2,0.01,4.0",
Density=6.11,
ChemicalFormula="V")
# Apply the efficiency correction to the measured spectrum
input_wksp = ConvertToPointData(InputWorkspace=input_wksp)
output_wksp = Multiply(LHSWorkspace=input_wksp, RHSWorkspace=corr_wksp)
output_wksp_with_wave_range = Multiply(LHSWorkspace=input_wksp, RHSWorkspace=corr_wksp_with_wave_range)
print('Input workspace: {}'.format(input_wksp.readY(0)[:5]))
print('Correction workspace: {}'.format(corr_wksp.readY(0)[:5]))
print('Output workspace: {}'.format(output_wksp.readY(0)[:5]))
print('Output workspace using WavelengthRange: {}'.format(output_wksp_with_wave_range.readY(0)[:5]))
Ouptut:
Input workspace: [ 40. 40. 40. 40. 40.]
Correction workspace: [ 24.40910309 23.29738394 22.28449939 21.35783225 20.50682528]
Output workspace: [ 976.3641235 931.8953577 891.37997557 854.31328983 820.2730111 ]
Output workspace using WavelengthRange: [ 976.3641235 931.8953577 891.37997557 854.31328983 820.2730111 ]
Example - Basics of running CalculateEfficiencyCorrection with MeasuredEfficiency and ChemicalFormula.
# Create an exponentially decaying function in wavelength to simulate measured sample
input_wksp = CreateSampleWorkspace(WorkspaceType="Event", Function="User Defined",
UserDefinedFunction="name=ExpDecay, Height=100, Lifetime=4",
Xmin=0.2, Xmax=4.0, BinWidth=0.01, XUnit="Wavelength",
NumEvents=10000, NumBanks=1, BankPixelWidth=1)
# Calculate the efficiency correction
corr_wksp = CalculateEfficiencyCorrection(InputWorkspace=input_wksp,
MeasuredEfficiency=1e-2,
ChemicalFormula="(He3)")
corr_wksp_with_wave_range = CalculateEfficiencyCorrection(WavelengthRange="0.2,0.01,4.0",
MeasuredEfficiency=1e-2,
ChemicalFormula="(He3)")
# Apply the efficiency correction to the measured spectrum
input_wksp = ConvertToPointData(InputWorkspace=input_wksp)
output_wksp = Multiply(LHSWorkspace=input_wksp, RHSWorkspace=corr_wksp)
output_wksp_with_wave_range = Multiply(LHSWorkspace=input_wksp, RHSWorkspace=corr_wksp_with_wave_range)
print('Input workspace: {}'.format(input_wksp.readY(0)[:5]))
print('Correction workspace: {}'.format(corr_wksp.readY(0)[:5]))
print('Output workspace: {}'.format(output_wksp.readY(0)[:5]))
print('Output workspace using WavelengthRange: {}'.format(output_wksp_with_wave_range.readY(0)[:5]))
Ouptut:
Input workspace: [ 40. 40. 40. 40. 40.]
Correction workspace: [ 873.27762699 832.68332786 795.69741128 761.85923269 730.78335476]
Output workspace: [ 34931.10507965 33307.33311431 31827.89645133 30474.36930745
29231.33419051]
Output workspace using WavelengthRange: [ 34931.10507965 33307.33311431 31827.89645133 30474.36930745
29231.33419051]
Example - Basics of running CalculateEfficiencyCorrection with MeasuredEfficiency and ChemicalFormula using the total cross section.
# Create an exponentially decaying function in wavelength to simulate measured sample
input_wksp = CreateSampleWorkspace(WorkspaceType="Event", Function="User Defined",
UserDefinedFunction="name=ExpDecay, Height=100, Lifetime=4",
Xmin=0.2, Xmax=4.0, BinWidth=0.01, XUnit="Wavelength",
NumEvents=10000, NumBanks=1, BankPixelWidth=1)
# Calculate the efficiency correction
corr_wksp = CalculateEfficiencyCorrection(InputWorkspace=input_wksp,
MeasuredEfficiency=1e-2,
ChemicalFormula="(He3)",
XSectionType="TotalXSection")
corr_wksp_with_wave_range = CalculateEfficiencyCorrection(WavelengthRange="0.2,0.01,4.0",
MeasuredEfficiency=1e-2,
ChemicalFormula="(He3)",
XSectionType="TotalXSection")
# Apply the efficiency correction to the measured spectrum
input_wksp = ConvertToPointData(InputWorkspace=input_wksp)
output_wksp = Multiply(LHSWorkspace=input_wksp, RHSWorkspace=corr_wksp)
output_wksp_with_wave_range = Multiply(LHSWorkspace=input_wksp, RHSWorkspace=corr_wksp_with_wave_range)
print('Input workspace: {}'.format(input_wksp.readY(0)[:5]))
print('Correction workspace: {}'.format(corr_wksp.readY(0)[:5]))
print('Output workspace: {}'.format(output_wksp.readY(0)[:5]))
print('Output workspace using WavelengthRange: {}'.format(output_wksp_with_wave_range.readY(0)[:5]))
Ouptut:
Input workspace: [ 40. 40. 40. 40. 40.]
Correction workspace: [ 865.7208838 825.85320701 789.49774383 756.20995361 725.61727932]
Output workspace: [ 34628.83535201 33034.12828025 31579.90975329 30248.39814428
29024.69117275]
Output workspace using WavelengthRange: [ 34628.83535201 33034.12828025 31579.90975329 30248.39814428
29024.69117275]
The transmission of a sample can be measured as \(e^{-\rho T \sigma_t (\lambda)}\) where \(\sigma_t (\lambda) = \sigma_s + \sigma_a (\lambda)\) is the total cross-section. This can be calculatd directly by the CalculateSampleTransmission v1 algorithm. Yet, we can also back out the transmission with the CalculateEfficiencyCorrection
algorithm. The example below shows how:
Example - Transmission using the CalculateEfficiencyCorrection and CalculateSampleTransmission comparison.
ws = CalculateSampleTransmission(WavelengthRange='2.0, 0.1, 10.0',
ChemicalFormula='H2-O')
print('Transmission: {} ...'.format(ws.readY(0)[:3]))
corr_wksp = CalculateEfficiencyCorrection(WavelengthRange="2.0, 0.1, 10.0",
Density=0.1,
Thickness=0.1,
ChemicalFormula="H2-O",
XSectionType="TotalXSection")
dataX = corr_wksp.readX(0)
dataY = np.ones(len(corr_wksp.readX(0)))
ones = CreateWorkspace(dataX, dataY, UnitX="Wavelength")
efficiency = Divide(LHSWorkspace=ones, RHSWorkspace=corr_wksp) # 1 + -1 * transmission
negative_trans = Minus(LHSWorkspace=efficiency, RHSWorkspace=ones) # -1 * transmission
transmission = Multiply(LHSWOrkspace=negative_trans, RHSWorkspace=-1.*ones)
print('Transmission using efficiency correction: {} ...'.format(transmission.readY(0)[:3]))
Output:
Transmission: [ 0.94506317 0.94505148 0.94503979] ...
Transmission using efficiency correction: [ 0.9450632 0.94505151 0.94503982] ...
The discrepancies are due to the differenc in \(\lambda_{ref}\) = 1.7982 \(\AA\) in CalculateEfficiencyCorrection
, consistent with ReferenceLambda where CalculateSampleTransmission v1 uses \(\lambda_{ref}\) = 1.798 \(\AA\).
Example - Running CalculateEfficiencyCorrection for incident spectrum.
To model the incident spectrum of polyethylene moderators, the following function is used to join the exponential decay of the epithermal flux to the Maxwellian distribution of the thermal flux [1]:
To determine this incident spectrum experimentally, one must make a measurement either via using a sample measurement such as vanadium [1] or using beam monitors. [2] [3] In either case, an efficiency correction must be applied to the measured spectrum to obtain the actual incident spectrum. This incident spectrum is a crucial part of calculating Placzek recoil sample corrections. [4]
From Eq. (3), the parameters vary based on the moderator material. For a polyethlyene moderator at a temperature of 300K, the following parameters have been used to accurately model the incident spectrum. [1] The parameter labels, variables used in the following code example, and values for the parameters are given in the table below:
Parameter | Variables | Polyethlyene 300K (ambient) |
---|---|---|
\(\phi_{max}\) | phiMax |
6324 |
\(\phi_{epi}\) | phiEpi |
786 |
\(\alpha\) | alpha |
0.099 |
\(\lambda_1\) | lambda1 |
0.67143 |
\(\lambda_2\) | lambda2 |
0.06075 |
\(\lambda_T\) | lambdaT |
1.58 \(\AA\) |
To first back out the measured spectrum of Milder et al. [1], the incident spectrum for polyethylene at 300K using Eq. (3) is obtained, then the efficiency correction is calculated, and then the incident spectrum is divided by this correction to back out what was originally measured. Then, the correction is applied by multiplying it by the measured spectrum to get back to the corrected incident spectrum to demonstrate how this is regularly apply this to a measured spectrum:
# Create the workspace to hold the already corrected incident spectrum
incident_wksp_name = 'incident_spectrum_wksp'
binning = "%s,%s,%s" % (0.2,0.01,4.0)
incident_wksp = CreateWorkspace(OutputWorkspace=incident_wksp_name,
NSpec=1, DataX=[0], DataY=[0],
UnitX='Wavelength',
VerticalAxisUnit='Text',
VerticalAxisValues='IncidentSpectrum')
incident_wksp = Rebin(InputWorkspace=incident_wksp, Params=binning)
incident_wksp = ConvertToPointData(InputWorkspace=incident_wksp)
# Spectrum function given in Milder et al. Eq (5)
def incidentSpectrum(wavelengths, phiMax, phiEpi, alpha, lambda1, lambda2, lamdaT):
deltaTerm = 1. / (1. + np.exp((wavelengths - lambda1) / lambda2))
term1 = phiMax * (lambdaT**4. / wavelengths**5.) * np.exp(-(lambdaT / wavelengths)**2.)
term2 = phiEpi * deltaTerm / (wavelengths**(1 + 2 * alpha))
return term1 + term2
# Variables for polyethlyene moderator at 300K
phiMax = 6324
phiEpi = 786
alpha = 0.099
lambda1 = 0.67143
lambda2 = 0.06075
lambdaT = 1.58
# Add the incident spectrum to the workspace
corrected_spectrum = incidentSpectrum(incident_wksp.readX(0),
phiMax, phiEpi, alpha,
lambda1, lambda2, lambdaT)
incident_wksp.setY(0, corrected_spectrum)
# Calculate the efficiency correction for Alpha=0.693 and back calculate measured spectrum
eff_wksp = CalculateEfficiencyCorrection(InputWorkspace=incident_wksp, Alpha=0.693)
measured_wksp = Divide(LHSWorkspace=incident_wksp, RHSWorkspace=eff_wksp)
# Re-applying the correction to the measured data (how to normally use it)
eff2_wksp = CalculateEfficiencyCorrection(InputWorkspace=measured_wksp, Alpha=0.693)
recorrected_wksp = Multiply(LHSWorkspace=measured_wksp, RHSWorkspace=eff2_wksp)
print('Measured incident spectrum: {}'.format(measured_wksp.readY(0)[:5]))
print('Corrected incident spectrum: {}'.format(incident_wksp.readY(0)[:5]))
print('Re-corrected incident spectrum: {}'.format(recorrected_wksp.readY(0)[:5]))
Output:
Measured incident spectrum: [ 694.61415533 685.71520053 677.21326605 669.0696332 661.25022644]
Corrected incident spectrum: [ 5244.9385468 4953.63834159 4690.60136547 4451.98728342 4234.6092648 ]
Re-corrected incident spectrum: [ 5244.9385468 4953.63834159 4690.60136547 4451.98728342 4234.6092648 ]
[1] | (1, 2, 3, 4)
|
[2] |
|
[3] |
|
[4] |
|
Categories: AlgorithmIndex | CorrectionFunctions\EfficiencyCorrections