\(\renewcommand\AA{\unicode{x212B}}\)
Table of Contents
Name | Direction | Type | Default | Description |
---|---|---|---|---|
SampleWorkspace | Input | MatrixWorkspace | Mandatory | Name for the input Sample workspace. |
ResolutionWorkspace | Input | MatrixWorkspace | Mandatory | Name for the input Resolution workspace. |
ParameterWorkspace | Input | MatrixWorkspace | Mandatory | Name for the input Parameters workspace. |
EnergyMax | Input | number | 0.5 | Energy maximum |
EnergyInc | Input | number | 0.005 | Energy increment |
OutputWorkspace | Output | MatrixWorkspace | Mandatory | Output workspace in S(Q, w) |
This algorithm calculates an S(Q, w) from the fitted results of a ConvFit: one or two Lorentzians. The Q, w range is that for the input _red workspace. A resolution _res is also needed for the elastic/delta-function peak.
The object is to create a S(Q, w) with an energy range greater than that of the measured Q, w to provide a better calculation for multiple scattering.
The ParameterWorkspace workspace must contain the following sample logs present when using ConvFit to fit either one or two Lorentzians:
Example - MuscatSofQW
sample = Load('irs26176_graphite002_red.nxs')
resolution = Load('irs26173_graphite002_res.nxs')
parameters = Load('irs26176_graphite002_conv_1LFixF_s0_to_9_Result.nxs')
sqw = MuscatSofQW(SampleWorkspace=sample,
ResolutionWorkspace=resolution,
ParameterWorkspace=parameters)
print('S(Q, w) workspace is intensity as a function of {0} and {1}'.format(
sqw.getAxis(0).getUnit().unitID(),
sqw.getAxis(1).getUnit().unitID()))
Output:
S(Q, w) workspace is intensity as a function of Energy and MomentumTransfer
Categories: AlgorithmIndex | Workflow\MIDAS
Python: MuscatSofQW.py