\(\renewcommand\AA{\unicode{x212B}}\)

FitPowderDiffPeaks v1

../_images/FitPowderDiffPeaks-v1_dlg.png

FitPowderDiffPeaks dialog.

Summary

Fit peaks in powder diffraction pattern.

See Also

LeBailFit

Properties

Name

Direction

Type

Default

Description

InputWorkspace

Input

MatrixWorkspace

Mandatory

Input workspace for data (diffraction pattern).

OutputWorkspace

Output

Workspace2D

Output Workspace2D for the fitted peaks.

BraggPeakParameterWorkspace

Input

TableWorkspace

Mandatory

TableWorkspace containg all peaks’ parameters.

InstrumentParameterWorkspace

InOut

TableWorkspace

Mandatory

TableWorkspace containg instrument’s parameters.

OutputBraggPeakParameterWorkspace

Output

TableWorkspace

Output TableWorkspace containing the fitted peak parameters for each peak.

OutputBraggPeakParameterDataWorkspace

Output

Workspace2D

Output Workspace2D containing fitted peak parameters for further refinement.

OutputZscoreWorkspace

Output

TableWorkspace

Output TableWorkspace containing the Zscore of the fitted peak parameters.

WorkspaceIndex

Input

number

0

Worskpace index for the data to refine against.

MinTOF

Input

number

Optional

Minimum TOF to fit peaks.

MaxTOF

Input

number

Optional

Maximum TOF to fit peaks.

FittingMode

Input

string

Robust

Fitting mode such that user can determinewhether the input parameters are trustful or not. Allowed values: [‘Robust’, ‘Confident’]

UseGivenPeakCentreTOF

Input

boolean

True

Use each Bragg peak’s centre in TOF given in BraggPeakParameterWorkspace.Otherwise, calculate each peak’s centre from d-spacing.

PeakParametersStartingValueFrom

Input

string

(HKL) & Calculation

Choice of how to generate starting values of Bragg peak profile parmeters. Allowed values: [‘(HKL) & Calculation’, ‘From Bragg Peak Table’]

MinimumPeakHeight

Input

number

0.2

Minimum peak height (with background removed) Any peak whose maximum height under this value will be treated as zero intensity.

PeaksCorrelated

Input

boolean

False

Flag for fact that all peaks’ corresponding profile parameters are correlated by an analytical function

MinimumHKL

Input

int list

Miller index of the left most peak (peak with minimum d-spacing) to be fitted.

NumberPeaksToFitBelowLowLimit

Input

number

0

Number of peaks to fit with d-spacing value less than specified minimum.

RightMostPeakHKL

Input

int list

Miller index of the right most peak. It is only required and used in RobustFit mode.

RightMostPeakLeftBound

Input

number

Optional

Left bound of the right most peak. Used in RobustFit mode.

RightMostPeakRightBound

Input

number

Optional

Right bound of the right most peak. Used in RobustFit mode.

FitCompositePeakBackground

Input

boolean

True

Flag to do fit to both peak and background in a composite function as last fit step.

Description

This algorithm fits a certain set of single diffraction peaks in a powder diffraction pattern.

The assumption is that all the peaks in the diffraction patter can be described by a single peak type. A specific peak parameter will have its values plotted by an analytical function among all the peaks.

It serves as the first step to fit/refine instrumental parameters that will be introduced in Le Bail fit. The second step is realized by algorithm RefinePowderInstrumentParameters.

Peak Fitting Algorithms

Peak Fitting Mode

Fitting mode determines the approach (or algorithm) to fit diffraction peaks. 2 modes are supported:

  1. Confident: User is confident on the input peak parameters. Thus the fitting will be a one-step minimizer by Levenberg-Marquardt.

  2. Robust: The given starting values of peak parameters may be too far away from true values. A trial-and-error approach is used.

Starting Values of Peaks’ Parameters

  1. “(HKL) & Calculation”: the starting values are calculated from each peak’s miller index and thermal neutron peak profile formula;

  2. “From Bragg Peak Table”: the starting values come from the Bragg Peak Parameter table.

Peak-fitting sequence

Peaks are fitted from high d-spacing, i.e., lowest possible Miller index, to low d-spacing values. If MinimumHKL is specified, then peak will be fitted from maximum d-spacing/TOF, to the peak with Miller index as MinimumHKL.

Correlated peak profile parameters

If peaks profile parameters are correlated by analytical functions, then the starting values of one peak will be the fitted peak profile parameters of its right neighbour.

Use Cases

Several use cases are listed below about how to use this algorithm.

Use case 1: robust fitting

  1. User wants to use the starting values of peaks parameters from input thermal neutron peak parameters such as Alph0, Alph1, and etc;

  2. User specifies the right most peak range and its Miller index;

  3. “FitPowderDiffPeaks” calculates Alpha, Beta and Sigma for each peak from parameter values from InstrumentParameterTable;

  4. “FitPowderDiffPeaks” fits peak parameters of each peak from high TOF to low TOF.

Use Case 2: Fitting Peak Parameters From Scratch

This is the extreme case such that

  1. Input instrumental geometry parameters, including Dtt1, Dtt1t, Dtt2t, Zero, Zerot, Tcross and Width, have roughly-guessed values;

  2. There is no pre-knowledge for each peak’s peak parameters, including Alpha, Beta, and Sigma.

How to use algorithm with other algorithms

This algorithm is designed to work with other algorithms to do Le Bail fit. The introduction can be found in the wiki page of LeBailFit v1.

Example of Working With Other Algorithms

FitPowderDiffPeaks is designed to work with other algorithms, such RefinePowderInstrumentParameters, and LeBailFit. See Le Bail *fit concept page for full list of such algorithms.

A common scenario is that the starting values of instrumental geometry related parameters (Dtt1, Dtt1t, and etc) are enough far from the real values.

  1. “FitPowderDiffPeaks” fits the single peaks from high TOF region in robust mode;

  2. “RefinePowderInstrumentParameters” refines the instrumental geometry related parameters by using the d-TOF function;

  3. Repeat step 1 and 2 for more single peaks incrementally. The predicted peak positions are more accurate in this step.

Usage

Example - Fit diffraction peaks by single peak fitting:

# Load reduced powder diffraction data
LoadAscii(Filename='PG3_11487-3.dat',
      OutputWorkspace='PG3_11487', Unit='TOF')

# Create table workspaces used by Le Bail fit algorithms
CreateLeBailFitInput(ReflectionsFile='LB4854b3.hkl', FullprofParameterFile='2011B_HR60b3.irf',
      Bank=3, LatticeConstant=4.1568899999999998, InstrumentParameterWorkspace='Bank3InstrumentParameterTable1',
      BraggPeakParameterWorkspace='BraggPeakParameterTable1')

# Fit background of the powder diffraction data
ProcessBackground(InputWorkspace='PG3_11487', OutputWorkspace='PG3_11487_Background', Options='SelectBackgroundPoints',
      LowerBound=10080, UpperBound=72000, SelectionMode='FitGivenDataPoints',
      BackgroundPoints='10082,10591,11154,12615,13690,13715,15073,16893,17764,19628,21318,24192,35350,44212,50900,60000,69900,79000',
      NoiseTolerance=0.10000000000000001, UserBackgroundWorkspace='dummy0', OutputBackgroundParameterWorkspace='dummy1')

Fit(Function='name=Polynomial,n=6,A0=0.473391,A1=-3.8911e-05,A2=1.7206e-09,A3=-3.21291e-14,A4=9.31264e-20,A5=3.90465e-24,A6=-3.28688e-29',
      InputWorkspace='PG3_11487_Background', MaxIterations=1000, OutputStatus='success',
      OutputChi2overDoF=2.0078239589764837, Minimizer='Levenberg-MarquardtMD', CreateOutput=True,
      Output='PG3_11487_Background', StartX=10080, EndX=72000,
      OutputNormalisedCovarianceMatrix='PG3_11487_Background_NormalisedCovarianceMatrix',
      OutputParameters='PG3_11487_Background_Parameters', OutputWorkspace='PG3_11487_Background_Workspace', Version=1)

# Fit individual peaks in the diffraction pattern
FitPowderDiffPeaks(InputWorkspace='PG3_11487', OutputWorkspace='Bank3FittedPeaks',
      BraggPeakParameterWorkspace='BraggPeakParameterTable1',
      InstrumentParameterWorkspace='Bank3InstrumentParameterTable1',
      OutputBraggPeakParameterWorkspace='BraggPeakParameterTable2_0',
      OutputBraggPeakParameterDataWorkspace='BraggPeakParameterTable2_P',
      OutputZscoreWorkspace='BraggPeakParameterTable2_Zscore',
      MinTOF=16866, MaxTOF=70000, UseGivenPeakCentreTOF=False, MinimumPeakHeight=0.29999999999999999,
      PeaksCorrelated=True, MinimumHKL='12,12,12', RightMostPeakHKL='1,1,0', RightMostPeakLeftBound=65800, RightMostPeakRightBound=67000)

# Print result
resultws = mtd["BraggPeakParameterTable2_P"]
for i in range(10):
    print("Peak @ d = {:.5f}, TOF_0 = {:.5f}, A = {:.5f}, B = {:.5f}, Sigma = {:.5f}".
          format(resultws.readX(0)[i], resultws.readY(0)[i], resultws.readY(1)[i], resultws.readY(2)[i], resultws.readY(3)[i]))

Output:

GeneraateHKL? =  False
Peak @ d = 0.75894, TOF_0 = 17142.23075, A = 0.15403, B = 0.10084, Sigma = 6.03789
Peak @ d = 0.77192, TOF_0 = 17435.01857, A = 0.16520, B = 0.10221, Sigma = 6.63462
Peak @ d = 0.79999, TOF_0 = 18069.21642, A = 0.15039, B = 0.09358, Sigma = 6.41801
Peak @ d = 0.81523, TOF_0 = 18413.34201, A = 0.14661, B = 0.09132, Sigma = 6.67055
Peak @ d = 0.83138, TOF_0 = 18778.30857, A = 0.13545, B = 0.09075, Sigma = 6.44981
Peak @ d = 0.84852, TOF_0 = 19164.95217, A = 0.14572, B = 0.08599, Sigma = 7.30674
Peak @ d = 0.88625, TOF_0 = 20017.59170, A = 0.12676, B = 0.08361, Sigma = 7.24717
Peak @ d = 0.90711, TOF_0 = 20488.70341, A = 0.12200, B = 0.08131, Sigma = 7.27715
Peak @ d = 0.92951, TOF_0 = 20994.85671, A = 0.12909, B = 0.08600, Sigma = 8.46692
Peak @ d = 0.95366, TOF_0 = 21540.74042, A = 0.10656, B = 0.07592, Sigma = 7.61463

Categories: AlgorithmIndex | Diffraction\Fitting

Source

C++ header: FitPowderDiffPeaks.h

C++ source: FitPowderDiffPeaks.cpp