\(\renewcommand\AA{\unicode{x212B}}\)

PoldiCreatePeaksFromCell v1

../_images/PoldiCreatePeaksFromCell-v1_dlg.png

PoldiCreatePeaksFromCell dialog.

Summary

Generate a TableWorkspace with all symmetry independent reflections using a unit cell.

See Also

PoldiCreatePeaksFromFile

Properties

Name

Direction

Type

Default

Description

SpaceGroup

Input

string

A 1 1 2

SpaceGroup of the crystal structure. Allowed values: [‘A 1 1 2’, ‘A 1 1 2/a’, ‘A 1 1 2/m’, ‘A 1 1 a’, ‘A 1 1 m’, ‘A 1 2 1’, ‘A 1 2/m 1’, ‘A 1 2/n 1’, ‘A 1 m 1’, ‘A 1 n 1’, ‘A 2 2 2’, ‘A 2 a a’, ‘A 2 m m’, ‘A 21 2 2’, ‘A 21 a m’, ‘A 21 m a’, ‘A e 2 a’, ‘A e 2 m’, ‘A e a 2’, ‘A e a a’, ‘A e a m’, ‘A e m 2’, ‘A e m a’, ‘A e m m’, ‘A m 2 a’, ‘A m 2 m’, ‘A m a 2’, ‘A m a a’, ‘A m a m’, ‘A m m 2’, ‘A m m a’, ‘A m m m’, ‘B 1 1 2’, ‘B 1 1 2/m’, ‘B 1 1 2/n’, ‘B 1 1 m’, ‘B 1 1 n’, ‘B 2 2 2’, ‘B 2 21 2’, ‘B 2 e b’, ‘B 2 e m’, ‘B 2 m b’, ‘B 2 m m’, ‘B b 2 b’, ‘B b 21 m’, ‘B b e 2’, ‘B b e b’, ‘B b e m’, ‘B b m 2’, ‘B b m b’, ‘B b m m’, ‘B m 2 m’, ‘B m 21 b’, ‘B m e 2’, ‘B m e b’, ‘B m e m’, ‘B m m 2’, ‘B m m b’, ‘B m m m’, ‘C 1 2 1’, ‘C 1 2/c 1’, ‘C 1 2/m 1’, ‘C 1 c 1’, ‘C 1 m 1’, ‘C 2 2 2’, ‘C 2 2 21’, ‘C 2 c e’, ‘C 2 c m’, ‘C 2 m e’, ‘C 2 m m’, ‘C c 2 e’, ‘C c 2 m’, ‘C c c 2’, ‘C c c e’, ‘C c c m’, ‘C c m 21’, ‘C c m e’, ‘C c m m’, ‘C m 2 e’, ‘C m 2 m’, ‘C m c 21’, ‘C m c e’, ‘C m c m’, ‘C m m 2’, ‘C m m e’, ‘C m m m’, ‘F -4 3 c’, ‘F -4 3 m’, ‘F 2 2 2’, ‘F 2 3’, ‘F 2 d d’, ‘F 2 m m’, ‘F 4 3 2’, ‘F 41 3 2’, ‘F d -3’, ‘F d -3 :2’, ‘F d -3 c’, ‘F d -3 c :2’, ‘F d -3 m’, ‘F d -3 m :2’, ‘F d 2 d’, ‘F d d 2’, ‘F d d d’, ‘F d d d :2’, ‘F m -3’, ‘F m -3 c’, ‘F m -3 m’, ‘F m 2 m’, ‘F m m 2’, ‘F m m m’, ‘I -4’, ‘I -4 2 d’, ‘I -4 2 m’, ‘I -4 3 d’, ‘I -4 3 m’, ‘I -4 c 2’, ‘I -4 m 2’, ‘I 1 1 2’, ‘I 1 1 2/b’, ‘I 1 1 2/m’, ‘I 1 1 b’, ‘I 1 1 m’, ‘I 1 2 1’, ‘I 1 2/a 1’, ‘I 1 2/m 1’, ‘I 1 a 1’, ‘I 1 m 1’, ‘I 2 2 2’, ‘I 2 3’, ‘I 2 c b’, ‘I 2 c m’, ‘I 2 m b’, ‘I 2 m m’, ‘I 21 21 21’, ‘I 21 3’, ‘I 4’, ‘I 4 2 2’, ‘I 4 3 2’, ‘I 4 c m’, ‘I 4 m m’, ‘I 4/m’, ‘I 4/m c m’, ‘I 4/m m m’, ‘I 41’, ‘I 41 2 2’, ‘I 41 3 2’, ‘I 41 c d’, ‘I 41 m d’, ‘I 41/a’, ‘I 41/a :2’, ‘I 41/a c d’, ‘I 41/a c d :2’, ‘I 41/a m d’, ‘I 41/a m d :2’, ‘I a -3’, ‘I a -3 d’, ‘I b a 2’, ‘I b a m’, ‘I b c a’, ‘I b m 2’, ‘I b m m’, ‘I c 2 a’, ‘I c 2 m’, ‘I c a b’, ‘I c m a’, ‘I c m m’, ‘I m -3’, ‘I m -3 m’, ‘I m 2 a’, ‘I m 2 m’, ‘I m a 2’, ‘I m a m’, ‘I m c b’, ‘I m c m’, ‘I m m 2’, ‘I m m a’, ‘I m m b’, ‘I m m m’, ‘P -1’, ‘P -3’, ‘P -3 1 c’, ‘P -3 1 m’, ‘P -3 c 1’, ‘P -3 m 1’, ‘P -4’, ‘P -4 2 c’, ‘P -4 2 m’, ‘P -4 21 c’, ‘P -4 21 m’, ‘P -4 3 m’, ‘P -4 3 n’, ‘P -4 b 2’, ‘P -4 c 2’, ‘P -4 m 2’, ‘P -4 n 2’, ‘P -6’, ‘P -6 2 c’, ‘P -6 2 m’, ‘P -6 c 2’, ‘P -6 m 2’, ‘P 1’, ‘P 1 1 2’, ‘P 1 1 2/a’, ‘P 1 1 2/b’, ‘P 1 1 2/m’, ‘P 1 1 2/n’, ‘P 1 1 21’, ‘P 1 1 21/a’, ‘P 1 1 21/b’, ‘P 1 1 21/m’, ‘P 1 1 21/n’, ‘P 1 1 a’, ‘P 1 1 b’, ‘P 1 1 m’, ‘P 1 1 n’, ‘P 1 2 1’, ‘P 1 2/a 1’, ‘P 1 2/c 1’, ‘P 1 2/m 1’, ‘P 1 2/n 1’, ‘P 1 21 1’, ‘P 1 21/a 1’, ‘P 1 21/c 1’, ‘P 1 21/m 1’, ‘P 1 21/n 1’, ‘P 1 a 1’, ‘P 1 c 1’, ‘P 1 m 1’, ‘P 1 n 1’, ‘P 2 2 2’, ‘P 2 2 21’, ‘P 2 21 2’, ‘P 2 21 21’, ‘P 2 3’, ‘P 2 a a’, ‘P 2 a n’, ‘P 2 c b’, ‘P 2 c m’, ‘P 2 m b’, ‘P 2 m m’, ‘P 2 n a’, ‘P 2 n n’, ‘P 21 2 2’, ‘P 21 2 21’, ‘P 21 21 2’, ‘P 21 21 21’, ‘P 21 3’, ‘P 21 a b’, ‘P 21 a m’, ‘P 21 c a’, ‘P 21 c n’, ‘P 21 m a’, ‘P 21 m n’, ‘P 21 n b’, ‘P 21 n m’, ‘P 3’, ‘P 3 1 2’, ‘P 3 1 c’, ‘P 3 1 m’, ‘P 3 2 1’, ‘P 3 c 1’, ‘P 3 m 1’, ‘P 31’, ‘P 31 1 2’, ‘P 31 2 1’, ‘P 32’, ‘P 32 1 2’, ‘P 32 2 1’, ‘P 4’, ‘P 4 2 2’, ‘P 4 21 2’, ‘P 4 3 2’, ‘P 4 b m’, ‘P 4 c c’, ‘P 4 m m’, ‘P 4 n c’, ‘P 4/m’, ‘P 4/m b m’, ‘P 4/m c c’, ‘P 4/m m m’, ‘P 4/m n c’, ‘P 4/n’, ‘P 4/n :2’, ‘P 4/n b m’, ‘P 4/n b m :2’, ‘P 4/n c c’, ‘P 4/n c c :2’, ‘P 4/n m m’, ‘P 4/n m m :2’, ‘P 4/n n c’, ‘P 4/n n c :2’, ‘P 41’, ‘P 41 2 2’, ‘P 41 21 2’, ‘P 41 3 2’, ‘P 42’, ‘P 42 2 2’, ‘P 42 21 2’, ‘P 42 3 2’, ‘P 42 b c’, ‘P 42 c m’, ‘P 42 m c’, ‘P 42 n m’, ‘P 42/m’, ‘P 42/m b c’, ‘P 42/m c m’, ‘P 42/m m c’, ‘P 42/m n m’, ‘P 42/n’, ‘P 42/n :2’, ‘P 42/n b c’, ‘P 42/n b c :2’, ‘P 42/n c m’, ‘P 42/n c m :2’, ‘P 42/n m c’, ‘P 42/n m c :2’, ‘P 42/n n m’, ‘P 42/n n m :2’, ‘P 43’, ‘P 43 2 2’, ‘P 43 21 2’, ‘P 43 3 2’, ‘P 6’, ‘P 6 2 2’, ‘P 6 c c’, ‘P 6 m m’, ‘P 6/m’, ‘P 6/m c c’, ‘P 6/m m m’, ‘P 61’, ‘P 61 2 2’, ‘P 62’, ‘P 62 2 2’, ‘P 63’, ‘P 63 2 2’, ‘P 63 c m’, ‘P 63 m c’, ‘P 63/m’, ‘P 63/m c m’, ‘P 63/m m c’, ‘P 64’, ‘P 64 2 2’, ‘P 65’, ‘P 65 2 2’, ‘P a -3’, ‘P b 2 b’, ‘P b 2 n’, ‘P b 21 a’, ‘P b 21 m’, ‘P b a 2’, ‘P b a a’, ‘P b a b’, ‘P b a m’, ‘P b a n’, ‘P b a n :2’, ‘P b c 21’, ‘P b c a’, ‘P b c b’, ‘P b c m’, ‘P b c n’, ‘P b m 2’, ‘P b m a’, ‘P b m b’, ‘P b m m’, ‘P b m n’, ‘P b n 21’, ‘P b n a’, ‘P b n b’, ‘P b n m’, ‘P b n n’, ‘P c 2 a’, ‘P c 2 m’, ‘P c 21 b’, ‘P c 21 n’, ‘P c a 21’, ‘P c a a’, ‘P c a b’, ‘P c a m’, ‘P c a n’, ‘P c c 2’, ‘P c c a’, ‘P c c b’, ‘P c c m’, ‘P c c n’, ‘P c m 21’, ‘P c m a’, ‘P c m b’, ‘P c m m’, ‘P c m n’, ‘P c n 2’, ‘P c n a’, ‘P c n a :2’, ‘P c n b’, ‘P c n m’, ‘P c n n’, ‘P m -3’, ‘P m -3 m’, ‘P m -3 n’, ‘P m 2 a’, ‘P m 2 m’, ‘P m 21 b’, ‘P m 21 n’, ‘P m a 2’, ‘P m a a’, ‘P m a b’, ‘P m a m’, ‘P m a n’, ‘P m c 21’, ‘P m c a’, ‘P m c b’, ‘P m c m’, ‘P m c n’, ‘P m m 2’, ‘P m m a’, ‘P m m b’, ‘P m m m’, ‘P m m n’, ‘P m m n :2’, ‘P m n 21’, ‘P m n a’, ‘P m n b’, ‘P m n m’, ‘P m n m :2’, ‘P m n n’, ‘P n -3’, ‘P n -3 :2’, ‘P n -3 m’, ‘P n -3 m :2’, ‘P n -3 n’, ‘P n -3 n :2’, ‘P n 2 b’, ‘P n 2 n’, ‘P n 21 a’, ‘P n 21 m’, ‘P n a 21’, ‘P n a a’, ‘P n a b’, ‘P n a m’, ‘P n a n’, ‘P n c 2’, ‘P n c a’, ‘P n c b’, ‘P n c b :2’, ‘P n c m’, ‘P n c n’, ‘P n m 21’, ‘P n m a’, ‘P n m b’, ‘P n m m’, ‘P n m m :2’, ‘P n m n’, ‘P n n 2’, ‘P n n a’, ‘P n n b’, ‘P n n m’, ‘P n n n’, ‘P n n n :2’, ‘R -3’, ‘R -3 :r’, ‘R -3 c’, ‘R -3 c :r’, ‘R -3 m’, ‘R -3 m :r’, ‘R 3’, ‘R 3 :r’, ‘R 3 c’, ‘R 3 c :r’, ‘R 3 m’, ‘R 3 m :r’, ‘R 32’, ‘R 32 :r’]

Atoms

Input

string

Atoms in the asymmetric unit. Format: Element x y z Occupancy U; …

a

Input

number

1

Lattice parameter a

b

Input

number

1

Lattice parameter b

c

Input

number

1

Lattice parameter c

alpha

Input

number

90

Lattice parameter alpha

beta

Input

number

90

Lattice parameter beta

gamma

Input

number

90

Lattice parameter gamma

LatticeSpacingMin

Input

number

0.5

Smallest allowed lattice spacing.

LatticeSpacingMax

Input

number

0

Largest allowed lattice spacing.

OutputWorkspace

Output

TableWorkspace

Mandatory

List with calculated peaks.

Description

This algorithm creates TableWorkspace with all symmetry independent reflections based on crystal structure and limits for lattice spacings. If a space group that belongs to a point group other than \(\bar{1}\) is specified, the lattice parameters supplied to the algorithm are corrected according to the crystal system:

Crystal system

Lattice parameters used by the algorithm

Constrained Cell

Triclinic

\(a\), \(b\), \(c\), \(\alpha\), \(\beta\), \(\gamma\)

\(a\), \(b\), \(c\), \(\alpha\), \(\beta\), \(\gamma\)

Monoclinic

\(a\), \(b\), \(c\), \(\beta\)

\(a\), \(b\), \(c\), \(90^\circ\), \(\beta\), \(90^\circ\)

Orthorhombic

\(a\), \(b\), \(c\)

\(a\), \(b\), \(c\), \(90^\circ\), \(90^\circ\), \(90^\circ\)

Tetragonal

\(a\), \(c\)

\(a\), \(a\), \(c\), \(90^\circ\), \(90^\circ\), \(90^\circ\)

Hexagonal

\(a\), \(c\)

\(a\), \(a\), \(c\), \(90^\circ\), \(90^\circ\), \(120^\circ\)

Trigonal

\(a\), \(\alpha\)

\(a\), \(a\), \(a\), \(\alpha\), \(\alpha\), \(\alpha\)

Cubic

\(a\)

\(a\), \(a\), \(a\), \(90^\circ\), \(90^\circ\), \(90^\circ\)

If other parameters are supplied, for example a = 2.0 and b = 5.0 with point group \(m\bar{3}m\), these parameters are discarded by the algorithm. The resulting TableWorkspace can be used by other POLDI-related routines.

Usage

The following usage example illustrates how the algorithm can be used to generate a table of symmetry independent reflections for a given lattice, in this case using the crystal structure of CsCl.

# Generate all unique reflections for CsCl between 0.55 and 4.0 Angstrom
csClReflections = PoldiCreatePeaksFromCell(
                    SpaceGroup="P m -3 m",
                    Atoms="Cl 0 0 0 1.0 0.005; Cs 0.5 0.5 0.5 1.0 0.005",
                    a=4.126,
                    LatticeSpacingMin=0.55, LatticeSpacingMax=4.0)

print("CsCl has {} unique reflections in the range between 0.55 and 4.0 Angstrom.".format(csClReflections.rowCount()))

Output:

CsCl has 68 unique reflections in the range between 0.55 and 4.0 Angstrom.

Categories: AlgorithmIndex | SINQ\Poldi

Source

C++ header: PoldiCreatePeaksFromCell.h

C++ source: PoldiCreatePeaksFromCell.cpp