\(\renewcommand\AA{\unicode{x212B}}\)

ReflectometryReductionOneLiveData v1

../_images/ReflectometryReductionOneLiveData-v1_dlg.png

ReflectometryReductionOneLiveData dialog.

Summary

Run the reflectometry reduction algorithm on live data

See Also

ReflectometryISISLoadAndProcess, StartLiveData

Properties

Name

Direction

Type

Default

Description

InputWorkspace

Input

MatrixWorkspace

Mandatory

Instrument

Input

string

CRISP

Instrument to find live value for. Allowed values: [‘CRISP’, ‘INTER’, ‘OFFSPEC’, ‘POLREF’, ‘SURF’]

GetLiveValueAlgorithm

Input

string

GetLiveInstrumentValue

The algorithm to use to get live values from the instrument

FirstTransmissionRunList

Input

str list

A list of run numbers or workspace names for the first transmission run. Multiple runs will be summed before reduction.

SecondTransmissionRunList

Input

str list

A list of run numbers or workspace names for the second transmission run. Multiple runs will be summed before reduction.

SliceWorkspace

Input

boolean

False

If true, slice the input workspace

NumberOfSlices

Input

number

Optional

The number of uniform-length slices to slice the input workspace into

SummationType

Input

string

SumInLambda

The type of summation to perform. Allowed values: [‘SumInLambda’, ‘SumInQ’]

ReductionType

Input

string

Normal

The type of reduction to perform when summing in Q. Allowed values: [‘Normal’, ‘DivergentBeam’, ‘NonFlatSample’]

IncludePartialBins

Input

boolean

False

If true then partial bins at the beginning and end of the output range are included

AnalysisMode

Input

string

PointDetectorAnalysis

Analysis mode. This property is only used when ProcessingInstructions is not set. Allowed values: [‘PointDetectorAnalysis’, ‘MultiDetectorAnalysis’]

ProcessingInstructions

Input

string

Grouping pattern of spectrum numbers to yield only the detectors of interest. See GroupDetectors for syntax.

CorrectDetectors

Input

boolean

True

Moves detectors to twoTheta if ThetaIn or ThetaLogName is given

DetectorCorrectionType

Input

string

VerticalShift

When correcting detector positions, this determines whether detectorsshould be shifted vertically or rotated around the sample position. Allowed values: [‘RotateAroundSample’, ‘VerticalShift’]

WavelengthMin

Input

number

Optional

Wavelength Min in angstroms

WavelengthMax

Input

number

Optional

Wavelength Max in angstroms

I0MonitorIndex

Input

number

Optional

I0 monitor workspace index

MonitorBackgroundWavelengthMin

Input

number

Optional

Wavelength minimum for monitor background subtraction in angstroms.

MonitorBackgroundWavelengthMax

Input

number

Optional

Wavelength maximum for monitor background subtraction in angstroms.

MonitorIntegrationWavelengthMin

Input

number

Optional

Wavelength minimum for integration in angstroms.

MonitorIntegrationWavelengthMax

Input

number

Optional

Wavelength maximum for integration in angstroms.

NormalizeByIntegratedMonitors

Input

boolean

True

Normalize by dividing by the integrated monitors.

SubtractBackground

Input

boolean

False

If true then perform background subtraction

BackgroundProcessingInstructions

Input

string

These processing instructions will be passed to the background subtraction algorithm

BackgroundCalculationMethod

Input

string

PerDetectorAverage

The type of background reduction to perform. Allowed values: [‘PerDetectorAverage’, ‘Polynomial’, ‘AveragePixelFit’]

DegreeOfPolynomial

Input

number

0

Degree of the fitted polynomial.

CostFunction

Input

string

Least squares

The cost function to be passed to the Fit algorithm. Allowed values: [‘Least squares’, ‘Unweighted least squares’]

Params

Input

dbl list

A comma separated list of first bin boundary, width, last bin boundary. These parameters are used for stitching together transmission runs. Values are in wavelength (angstroms). This input is only needed if a SecondTransmission run is provided.

StartOverlap

Input

number

Optional

Start wavelength for stitching transmission runs together. Only used if a second transmission run is provided.

EndOverlap

Input

number

Optional

End wavelength (angstroms) for stitching transmission runs together. Only used if a second transmission run is provided.

ScaleRHSWorkspace

Input

boolean

True

Scale the right-hand-side or left-hand-side workspace. Only used if a second transmission run is provided.

TransmissionProcessingInstructions

Input

string

These processing instructions will be passed to the transmission workspace algorithm

CorrectionAlgorithm

Input

string

AutoDetect

The type of correction to perform. Allowed values: [‘None’, ‘AutoDetect’, ‘PolynomialCorrection’, ‘ExponentialCorrection’]

Polynomial

Input

dbl list

Coefficients to be passed to the PolynomialCorrection algorithm.

C0

Input

number

0

C0 value to be passed to the ExponentialCorrection algorithm.

C1

Input

number

0

C1 value to be passed to the ExponentialCorrection algorithm.

MomentumTransferMin

Input

number

Optional

Minimum Q value in IvsQ Workspace. Used for Rebinning the IvsQ Workspace

MomentumTransferStep

Input

number

Optional

Resolution value in IvsQ Workspace. Used for Rebinning the IvsQ Workspace. This value will be made minus to apply logarithmic rebinning. If you wish to have linear bin-widths then please provide a negative value.

MomentumTransferMax

Input

number

Optional

Maximum Q value in IvsQ Workspace. Used for Rebinning the IvsQ Workspace

ScaleFactor

Input

number

Optional

Factor you wish to scale Q workspace by.

PolarizationAnalysis

Input

boolean

False

Apply polarization corrections

FloodCorrection

Input

string

Workspace

The way to apply flood correction: Workspace - use FloodWorkspace property to get the flood workspace, ParameterFile - use parameters in the parameter file to construct and apply flood correction workspace. Allowed values: [‘Workspace’, ‘ParameterFile’]

FloodWorkspace

Input

MatrixWorkspace

A flood workspace to apply; if empty and FloodCorrection is ‘Workspace’ then no correction is applied.

Debug

Input

boolean

False

Whether to enable the output of extra workspaces.

TimeInterval

Input

dbl list

Array for lengths of time intervals for splitters: if the array is empty, then there will be one splitter created from StartTime and StopTime; if the array has one value, then if this value is positive, all splitters will have same time intervals, else the time intervals will be exponentially increasing; if the size of the array is larger than one, then the splitters can have various time interval values.

LogValueInterval

Input

number

Optional

Delta of log value to be sliced into from min log value and max log value; if not given, then only value

LogName

Input

string

Name of the sample log to use to filter - for example, the pulse charge is recorded in ‘ProtonCharge’.

UseNewFilterAlgorithm

Input

boolean

True

If true, use the new FilterEvents algorithm instead of FilterByTime.

ReloadInvalidWorkspaces

Input

boolean

True

If true, reload input workspaces if they are of the incorrect type

GroupTOFWorkspaces

Input

boolean

True

If true, group the TOF workspaces

OutputWorkspace

Output

MatrixWorkspace

Output workspace in Q (native binning)

ReflectometryReductionOneAutoLiveData

This algorithm performs a reduction with ReflectometryReductionOneAuto v3 on a live data workspace. It is intended to be run as a post-processing algorithm for StartLiveData v1, although it can also be called directly on a workspace output from live data monitoring. It is not intended to be run on a workspace for a completed run.

This algorithm does some setting up of the instrument and sample logs, which are not normally present for a live data workspace, so that the reduction can be run. This uses live values for theta and the slit gaps, which are found from the instrument using GetLiveInstrumentValue v1. Once the workspace is set up, ReflectometryReductionOneAuto v3 is run, with ThetaLogName set to the appropriate value to use the value of theta that was set in the logs.

GetLiveInstrumentValue v1 requires Mantid to have EPICS support installed, and appropriate processes must be running on the instrument to supply the EPICS values. A different algorithm for fetching live values could be specified by overriding the GetLiveValueAlgorithm property.

Usage

StartLiveData(Instrument=’INTER’,

PostProcessingAlgorithm=’ReflectometryReductionOneLiveData’, PostProcessingProperties=’Instrument=INTER’, AccumulationMethod=’Replace’,AccumulationWorkspace=’TOF_live’,OutputWorkspace=’IvsQ_binned_live’,)

See also

Algorithm GetLiveInstrumentValue v1, ReflectometryReductionOneAuto v3, StartLiveData v1 and the ISIS Reflectometry interface.

Categories: AlgorithmIndex | Reflectometry

Source

Python: ReflectometryReductionOneLiveData.py