\(\renewcommand\AA{\unicode{x212B}}\)
VesuvioPeakPrediction v1¶
Summary¶
Predicts parameters for Vesuvio peak widths using Debye or Einstein methods
Properties¶
Name |
Direction |
Type |
Default |
Description |
---|---|---|---|---|
Model |
Input |
string |
Einstein |
Model used to make predictions. Allowed values: [‘Debye’, ‘Einstein’] |
Temperature |
Input |
dbl list |
Temperature (K) |
|
AtomicMass |
Input |
number |
1 |
Atomic Mass (AMU) |
Frequency |
Input |
number |
1 |
Fundamental frequency of oscillator (mEV) |
DebyeTemperature |
Input |
number |
1 |
Debye Temperature (K) |
OutputTable |
Output |
vesuvio_params |
The name of the output table |
Description¶
This algorithm uses either the Debye or Einstein method to calculate kinetic energy and root mean squared momentum and in the Debye case, root mean squared displacement, from a given temperature and atomic mass. The outputs from this can be used to help predict the nature of peaks in Vesuvio data.
Usage¶
Example - VesuvioPeakPrediction
vesuvio_debye_params = VesuvioPeakPrediction(Model='Debye', Temperature=[300], AtomicMass=63.5, Frequency=20, DebyeTemperature=347)
vesuvio_einstein_params= VesuvioPeakPrediction(Model='Einstein', Temperature=[300], AtomicMass=63.5, Frequency=20, DebyeTemperature=347)
vp = vesuvio_debye_params
print('--------Debye--------')
for c in vp.keys():
print('%s: %.4f' %(c, vp.column(c)[0]))
vp = vesuvio_einstein_params
print('\n--------Einstein--------')
for c in vp.keys():
print('%s: %.4f' %(c, vp.column(c)[0]))
Output:
--------Debye--------
Temperature(K): 300.0000
Atomic Mass(AMU): 63.5000
Debye Temp(K): 347.0000
Kinetic Energy(mEV): 41.2028
RMS Momentum(A-1): 20.4267
RMS Displacement(A): 0.0769
--------Einstein--------
Temperature(K): 300.0000
Atomic Mass(AMU): 63.5000
Frequency(mEV): 20.0000
Kinetic Energy(mEV): 13.5644
Effective Temp(K): 314.8156
RMS Momentum(A): 20.3903
Categories: AlgorithmIndex | Inelastic\Indirect\Vesuvio
Source¶
Python: VesuvioPeakPrediction.py