\(\renewcommand\AA{\unicode{x212B}}\)
OrientedLattice¶
This is a Python binding to the C++ class Mantid::Geometry::OrientedLattice. The methods on this class follow naming conventions for parameters as defined in the International Tables for Crystallography. See also the note about orientation.
bases: mantid.geometry.UnitCell
- class mantid.geometry.OrientedLattice¶
- a((UnitCell)self) float : ¶
Returns the length of the \(a\) direction of the unit cell in \(\rm{\AA}\).
- a1((UnitCell)self) float : ¶
Returns the length of the \(a_{1} = a\) direction of the unit cell. This is an alias for
a()
.
- a2((UnitCell)self) float : ¶
Returns the length of the \(a_{2} = b\) direction of the unit cell. This is an alias for
b()
.
- a3((UnitCell)self) float : ¶
Returns the length of the \(a_{2} = c\) direction of the unit cell. This is an alias for
c()
.
- alpha((UnitCell)self) float : ¶
Returns the \(\alpha\) angle for this unit cell in degrees.
- alpha1((UnitCell)self) float : ¶
Returns the \(\alpha_{1} = \alpha\) angle of the unit cell in radians. See also
alpha()
.
- alpha2((UnitCell)self) float : ¶
Returns the \(\alpha_{2} = \beta\) angle of the unit cell in radians. See also
beta()
.
- alpha3((UnitCell)self) float : ¶
Returns the \(\alpha_{3} = \gamma\) angle of the unit cell in radians. See also
gamma()
.
- alphastar((UnitCell)self) float : ¶
Returns the reciprocal \(\alpha\) angle for this unit cell in degrees.
- astar((UnitCell)self) float : ¶
Returns the length of the reciprocal \(a\) direction for this unit cell in reciprocal \(\rm{\AA}\).
- b((UnitCell)self) float : ¶
Returns the length of the \(b\) direction of the unit cell in \(\rm{\AA}\).
- b1((UnitCell)self) float : ¶
Returns the length of the \(b_{1} = a^{*}\) direction of the unit cell. This is an alias for
astar()
.
- b2((UnitCell)self) float : ¶
Returns the length of the \(b_{2} = b^{*}\) direction of the unit cell. This is an alias for
bstar()
.
- b3((UnitCell)self) float : ¶
Returns the length of the \(b_{3} = c^{*}\) direction of the unit cell. This is an alias for
cstar()
.
- beta((UnitCell)self) float : ¶
Returns the \(\beta\) angle for this unit cell in degrees.
- beta1((UnitCell)self) float : ¶
Returns the \(\beta_{1} = \alpha^{*}\) angle of the unit cell in radians. See also
alphastar()
.
- beta2((UnitCell)self) float : ¶
Returns the \(\beta_{2} = \beta^{*}\) angle of the unit cell in radians. See also
betastar()
.
- beta3((UnitCell)self) float : ¶
Returns the \(\beta_{3} = \gamma^{*}\) angle of the unit cell in radians. See also
gammastar()
.
- betastar((UnitCell)self) float : ¶
Returns the \(\beta^{*}\) angle for this unit cell in degrees.
- bstar((UnitCell)self) float : ¶
Returns the length of the \(b^{*}\) direction for this unit cell in reciprocal \(\rm{\AA}\).
- c((UnitCell)self) float : ¶
Returns the length of the \(c\) direction of the unit cell in \(\rm{\AA}\).
- cstar((UnitCell)self) float : ¶
Returns the length of the \(c^{*}\) direction for this unit cell in reciprocal \(\rm{\AA}\).
- d((UnitCell)self, (float)h, (float)k, (float)l) float : ¶
Returns \(d\)-spacing for a given H, K, L coordinate in \(\rm{\AA}\).
- d( (UnitCell)self, (V3D)hkl) -> float :
Returns \(d\)-spacing for a given H, K, L coordinate in \(\rm{\AA}\).
- dstar((UnitCell)self, (float)h, (float)k, (float)l) float : ¶
Returns \(d^{*} = 1/d\) for a given H, K, L coordinate in \(\rm{\AA}^{3}\).
- errora((UnitCell)self) float : ¶
Returns the error in the \(a\) unit cell length.
- erroralpha((UnitCell)self[, (int)Unit=0]) float : ¶
Returns the error in the \(\alpha\) angle of the unit cell.
- errorb((UnitCell)self) float : ¶
Returns the error in the \(b\) unit cell length.
- errorbeta((UnitCell)self[, (int)Unit=0]) float : ¶
Returns the error in \(\beta\) angle of the unit cell.
- errorc((UnitCell)self) float : ¶
Returns the error in the \(c\) unit cell length.
- errorgamma((UnitCell)self[, (int)Unit=0]) float : ¶
Returns the error in \(\gamma\) angle of the unit cell.
- gamma((UnitCell)self) float : ¶
Returns the \(\gamma\) angle for this unit cell in degrees.
- gammastar((UnitCell)self) float : ¶
Returns the \(\gamma^{*}\) angle for this unit cell in degrees.
- getB((UnitCell)self) numpy.ndarray : ¶
Returns the \(B\) matrix for this unit cell. This will be in a right-handed coordinate system and using the Busing-Levy convention. This will return a
numpy.ndarray
with shape(3,3)
.
- getBinv((UnitCell)self) numpy.ndarray : ¶
Returns the inverse of the \(B\) matrix for this unit cell.This will return a
numpy.ndarray
with shape(3,3)
. See alsogetB()
.
- getG((UnitCell)self) numpy.ndarray : ¶
Returns the metric tensor for the unit cell. This will return a
numpy.ndarray
with shape(3,3)
.
- getGstar((UnitCell)self) numpy.ndarray : ¶
Returns the metric tensor for the reciprocal unit cell. This will return a
numpy.ndarray
with shape(3,3)
.
- getMaxOrder((UnitCell)self) int : ¶
Returns the number of modulation vectors. This will return an int.
- getModHKL((UnitCell)self) numpy.ndarray : ¶
Returns the \(ModHKL\) matrix for this unit cell. This will be in a right-handed coordinate system and using the Busing-Levy convention. This will return a
numpy.ndarray
with shape(3,3)
.
- getModUB((OrientedLattice)self) numpy.ndarray : ¶
Returns the \(ModUB\) matrix for this oriented lattice. This will return a
numpy.ndarray
with shape(3,3)
.
- getModVec((UnitCell)self, (int)i) V3D : ¶
Returns the ith modulation vector
- getU((OrientedLattice)self) numpy.ndarray : ¶
Returns the \(U\) rotation matrix. This will return a
numpy.ndarray
with shape(3,3)
.
- getUB((OrientedLattice)self) numpy.ndarray : ¶
Returns the \(UB\) matrix for this oriented lattice. This will return a
numpy.ndarray
with shape(3,3)
.
- getuVector((OrientedLattice)self) V3D : ¶
Returns the vector along the beam direction when
Goniometer
s are at 0.
- getvVector((OrientedLattice)self) V3D : ¶
Returns the vector along the horizontal plane, perpendicular to the beam direction when
Goniometer
s are at 0.
- hklFromQ((OrientedLattice)self, (object)vec) V3D : ¶
\(HKL\) value from \(Q\) vector
- qFromHKL((OrientedLattice)self, (object)vec) V3D : ¶
\(Q\) vector from \(HKL\) vector
- recAngle((UnitCell)self, (float)h1, (float)k1, (float)l1, (float)h2, (float)k2, (float)l2[, (int)Unit=0]) float : ¶
Returns the angle in reciprocal space between vectors given by (\(h_1, k_1, l_1\)) and (\(h_2, k_2, l_2\)) (in degrees or radians). The optional parameter
Unit
controls the units for the angles, and can have the value ofDegrees
orRadians
. By default Unit = Degrees
- recVolume((UnitCell)self) float : ¶
Return the volume of the reciprocal unit cell (in \(\rm{\AA}^{-3}\))
- recalculateFromGstar((UnitCell)self, (object)NewGstar) None : ¶
Recalculate the unit cell parameters from a metric tensor. This method accepts a
numpy.ndarray
with shape(3,3)
.
- set((UnitCell)self, (float)_a, (float)_b, (float)_c, (float)_alpha, (float)_beta, (float)_gamma[, (int)Unit=0]) None : ¶
Set the parameters of the unit cell. Angles can be set in eitherdegrees or radians using the
Unit
parameter (0 = degrees, 1 = radians)
- setError((UnitCell)self, (float)_aerr, (float)_berr, (float)_cerr, (float)_alphaerr, (float)_betaerr, (float)_gammaerr[, (int)Unit=0]) None : ¶
Set the errors in the unit cell parameters.
- setErrora((UnitCell)self, (float)_aerr) None : ¶
Set the error in the length of the \(a\) direction of the unit cell.
- setErroralpha((UnitCell)self, (float)_alphaerr[, (int)Unit=0]) None : ¶
Set the error in the \(\alpha\) angle of the unit cell.
- setErrorb((UnitCell)self, (float)_berr) None : ¶
Set the error in the length of the \(b\) direction of the unit cell.
- setErrorbeta((UnitCell)self, (float)_betaerr[, (int)Unit=0]) None : ¶
Set the error in the \(\beta\) angle of the unit cell using the
Unit
parameter.
- setErrorc((UnitCell)self, (float)_cerr) None : ¶
Set the error in the length of the \(c\) direction of the unit cell.
- setErrorgamma((UnitCell)self, (float)_gammaerr[, (int)Unit=0]) None : ¶
Set the error in the \(\gamma\) angle of the unit cell using the
Unit
parameter.
- setMaxOrder((UnitCell)arg1, (int)arg2) None : ¶
Set the maximum order of modulated vectors searched
- setModUB((OrientedLattice)self, (object)newModUB) None : ¶
Set the \(ModUB\) matrix. This methiod will calculate first the lattice parameters, then the \(B\) matrix, and then \(U\). This method expects a
numpy.ndarray
with shape(3,3)
.
- setModVec1((UnitCell)self, (V3D)vec) None : ¶
Set the first modulated structure vector
- setModVec2((UnitCell)self, (V3D)vec) None : ¶
Set the second modulated structure vector
- setModVec3((UnitCell)self, (V3D)vec) None : ¶
Set the third modulated structure vector
- setU((OrientedLattice)self, (object)newU[, (bool)force=True]) None : ¶
Set the \(U\) rotation matrix. This method expects a
numpy.ndarray
with shape(3,3)
.
- setUB((OrientedLattice)self, (object)newUB) None : ¶
Set the \(UB\) matrix. This methiod will calculate first the lattice parameters, then the \(B\) matrix, and then \(U\). This method expects a
numpy.ndarray
with shape(3,3)
.
- setUFromVectors((OrientedLattice)self, (object)u, (object)v) None : ¶
Set the \(U\) rotation matrix using two vectors to define a new coordinate system. This method with return the new \(U\) matrix as a
numpy.ndarray
with shape(3,3)
.
- seta((UnitCell)self, (float)_a) None : ¶
Set the length of the \(a\) direction of the unit cell.
- setalpha((UnitCell)self, (float)_alpha[, (int)Unit=0]) None : ¶
Set the \(\alpha\) angle of the unit cell. The angle can be set either in degrees or radians using the
Unit
parameter.
- setb((UnitCell)self, (float)_b) None : ¶
Set the length of the \(b\) direction of the unit cell.
- setbeta((UnitCell)self, (float)_beta[, (int)Unit=0]) None : ¶
Set the \(\beta\) angle of the unit cell. The angle can be set either in degrees or radians using the
Unit
parameter.
- setc((UnitCell)self, (float)_c) None : ¶
Set the length of the \(c\) direction of the unit cell.
- setgamma((UnitCell)self, (float)_gamma[, (int)Unit=0]) None : ¶
Set the \(\gamma\) angle of the unit cell. The angle can be set either in degrees or radians using the
Unit
parameter.
- volume((UnitCell)self) float : ¶
Return the volume of the unit cell (in \(\rm{\AA}{^3}\))