\(\renewcommand\AA{\unicode{x212B}}\)

OrientedLattice

This is a Python binding to the C++ class Mantid::Geometry::OrientedLattice. The methods on this class follow naming conventions for parameters as defined in the International Tables for Crystallography. See also the note about orientation.

bases: mantid.geometry.UnitCell

class mantid.geometry.OrientedLattice
a((UnitCell)self) float :

Returns the length of the \(a\) direction of the unit cell in \(\rm{\AA}\).

a1((UnitCell)self) float :

Returns the length of the \(a_{1} = a\) direction of the unit cell. This is an alias for a().

a2((UnitCell)self) float :

Returns the length of the \(a_{2} = b\) direction of the unit cell. This is an alias for b().

a3((UnitCell)self) float :

Returns the length of the \(a_{2} = c\) direction of the unit cell. This is an alias for c().

alpha((UnitCell)self) float :

Returns the \(\alpha\) angle for this unit cell in degrees.

alpha1((UnitCell)self) float :

Returns the \(\alpha_{1} = \alpha\) angle of the unit cell in radians. See also alpha().

alpha2((UnitCell)self) float :

Returns the \(\alpha_{2} = \beta\) angle of the unit cell in radians. See also beta().

alpha3((UnitCell)self) float :

Returns the \(\alpha_{3} = \gamma\) angle of the unit cell in radians. See also gamma().

alphastar((UnitCell)self) float :

Returns the reciprocal \(\alpha\) angle for this unit cell in degrees.

astar((UnitCell)self) float :

Returns the length of the reciprocal \(a\) direction for this unit cell in reciprocal \(\rm{\AA}\).

b((UnitCell)self) float :

Returns the length of the \(b\) direction of the unit cell in \(\rm{\AA}\).

b1((UnitCell)self) float :

Returns the length of the \(b_{1} = a^{*}\) direction of the unit cell. This is an alias for astar().

b2((UnitCell)self) float :

Returns the length of the \(b_{2} = b^{*}\) direction of the unit cell. This is an alias for bstar().

b3((UnitCell)self) float :

Returns the length of the \(b_{3} = c^{*}\) direction of the unit cell. This is an alias for cstar().

beta((UnitCell)self) float :

Returns the \(\beta\) angle for this unit cell in degrees.

beta1((UnitCell)self) float :

Returns the \(\beta_{1} = \alpha^{*}\) angle of the unit cell in radians. See also alphastar().

beta2((UnitCell)self) float :

Returns the \(\beta_{2} = \beta^{*}\) angle of the unit cell in radians. See also betastar().

beta3((UnitCell)self) float :

Returns the \(\beta_{3} = \gamma^{*}\) angle of the unit cell in radians. See also gammastar().

betastar((UnitCell)self) float :

Returns the \(\beta^{*}\) angle for this unit cell in degrees.

bstar((UnitCell)self) float :

Returns the length of the \(b^{*}\) direction for this unit cell in reciprocal \(\rm{\AA}\).

c((UnitCell)self) float :

Returns the length of the \(c\) direction of the unit cell in \(\rm{\AA}\).

cstar((UnitCell)self) float :

Returns the length of the \(c^{*}\) direction for this unit cell in reciprocal \(\rm{\AA}\).

d((UnitCell)self, (float)h, (float)k, (float)l) float :

Returns \(d\)-spacing for a given H, K, L coordinate in \(\rm{\AA}\).

d( (UnitCell)self, (V3D)hkl) -> float :

Returns \(d\)-spacing for a given H, K, L coordinate in \(\rm{\AA}\).

dstar((UnitCell)self, (float)h, (float)k, (float)l) float :

Returns \(d^{*} = 1/d\) for a given H, K, L coordinate in \(\rm{\AA}^{3}\).

errora((UnitCell)self) float :

Returns the error in the \(a\) unit cell length.

erroralpha((UnitCell)self[, (int)Unit=0]) float :

Returns the error in the \(\alpha\) angle of the unit cell.

errorb((UnitCell)self) float :

Returns the error in the \(b\) unit cell length.

errorbeta((UnitCell)self[, (int)Unit=0]) float :

Returns the error in \(\beta\) angle of the unit cell.

errorc((UnitCell)self) float :

Returns the error in the \(c\) unit cell length.

errorgamma((UnitCell)self[, (int)Unit=0]) float :

Returns the error in \(\gamma\) angle of the unit cell.

gamma((UnitCell)self) float :

Returns the \(\gamma\) angle for this unit cell in degrees.

gammastar((UnitCell)self) float :

Returns the \(\gamma^{*}\) angle for this unit cell in degrees.

getB((UnitCell)self) numpy.ndarray :

Returns the \(B\) matrix for this unit cell. This will be in a right-handed coordinate system and using the Busing-Levy convention. This will return a numpy.ndarray with shape (3,3).

getBinv((UnitCell)self) numpy.ndarray :

Returns the inverse of the \(B\) matrix for this unit cell.This will return a numpy.ndarray with shape (3,3). See also getB().

getG((UnitCell)self) numpy.ndarray :

Returns the metric tensor for the unit cell. This will return a numpy.ndarray with shape (3,3).

getGstar((UnitCell)self) numpy.ndarray :

Returns the metric tensor for the reciprocal unit cell. This will return a numpy.ndarray with shape (3,3).

getMaxOrder((UnitCell)self) int :

Returns the number of modulation vectors. This will return an int.

getModHKL((UnitCell)self) numpy.ndarray :

Returns the \(ModHKL\) matrix for this unit cell. This will be in a right-handed coordinate system and using the Busing-Levy convention. This will return a numpy.ndarray with shape (3,3).

getModUB((OrientedLattice)self) numpy.ndarray :

Returns the \(ModUB\) matrix for this oriented lattice. This will return a numpy.ndarray with shape (3,3).

getModVec((UnitCell)self, (int)i) V3D :

Returns the ith modulation vector

getU((OrientedLattice)self) numpy.ndarray :

Returns the \(U\) rotation matrix. This will return a numpy.ndarray with shape (3,3).

getUB((OrientedLattice)self) numpy.ndarray :

Returns the \(UB\) matrix for this oriented lattice. This will return a numpy.ndarray with shape (3,3).

getuVector((OrientedLattice)self) V3D :

Returns the vector along the beam direction when Goniometer s are at 0.

getvVector((OrientedLattice)self) V3D :

Returns the vector along the horizontal plane, perpendicular to the beam direction when Goniometer s are at 0.

hklFromQ((OrientedLattice)self, (object)vec) V3D :

\(HKL\) value from \(Q\) vector

qFromHKL((OrientedLattice)self, (object)vec) V3D :

\(Q\) vector from \(HKL\) vector

recAngle((UnitCell)self, (float)h1, (float)k1, (float)l1, (float)h2, (float)k2, (float)l2[, (int)Unit=0]) float :

Returns the angle in reciprocal space between vectors given by (\(h_1, k_1, l_1\)) and (\(h_2, k_2, l_2\)) (in degrees or radians). The optional parameter Unit controls the units for the angles, and can have the value of Degrees or Radians. By default Unit = Degrees

recVolume((UnitCell)self) float :

Return the volume of the reciprocal unit cell (in \(\rm{\AA}^{-3}\))

recalculateFromGstar((UnitCell)self, (object)NewGstar) None :

Recalculate the unit cell parameters from a metric tensor. This method accepts a numpy.ndarray with shape (3,3).

set((UnitCell)self, (float)_a, (float)_b, (float)_c, (float)_alpha, (float)_beta, (float)_gamma[, (int)Unit=0]) None :

Set the parameters of the unit cell. Angles can be set in eitherdegrees or radians using the Unit parameter (0 = degrees, 1 = radians)

setError((UnitCell)self, (float)_aerr, (float)_berr, (float)_cerr, (float)_alphaerr, (float)_betaerr, (float)_gammaerr[, (int)Unit=0]) None :

Set the errors in the unit cell parameters.

setErrora((UnitCell)self, (float)_aerr) None :

Set the error in the length of the \(a\) direction of the unit cell.

setErroralpha((UnitCell)self, (float)_alphaerr[, (int)Unit=0]) None :

Set the error in the \(\alpha\) angle of the unit cell.

setErrorb((UnitCell)self, (float)_berr) None :

Set the error in the length of the \(b\) direction of the unit cell.

setErrorbeta((UnitCell)self, (float)_betaerr[, (int)Unit=0]) None :

Set the error in the \(\beta\) angle of the unit cell using the Unit parameter.

setErrorc((UnitCell)self, (float)_cerr) None :

Set the error in the length of the \(c\) direction of the unit cell.

setErrorgamma((UnitCell)self, (float)_gammaerr[, (int)Unit=0]) None :

Set the error in the \(\gamma\) angle of the unit cell using the Unit parameter.

setMaxOrder((UnitCell)arg1, (int)arg2) None :

Set the maximum order of modulated vectors searched

setModUB((OrientedLattice)self, (object)newModUB) None :

Set the \(ModUB\) matrix. This methiod will calculate first the lattice parameters, then the \(B\) matrix, and then \(U\). This method expects a numpy.ndarray with shape (3,3).

setModVec1((UnitCell)self, (V3D)vec) None :

Set the first modulated structure vector

setModVec2((UnitCell)self, (V3D)vec) None :

Set the second modulated structure vector

setModVec3((UnitCell)self, (V3D)vec) None :

Set the third modulated structure vector

setU((OrientedLattice)self, (object)newU[, (bool)force=True]) None :

Set the \(U\) rotation matrix. This method expects a numpy.ndarray with shape (3,3).

setUB((OrientedLattice)self, (object)newUB) None :

Set the \(UB\) matrix. This methiod will calculate first the lattice parameters, then the \(B\) matrix, and then \(U\). This method expects a numpy.ndarray with shape (3,3).

setUFromVectors((OrientedLattice)self, (object)u, (object)v) None :

Set the \(U\) rotation matrix using two vectors to define a new coordinate system. This method with return the new \(U\) matrix as a numpy.ndarray with shape (3,3).

seta((UnitCell)self, (float)_a) None :

Set the length of the \(a\) direction of the unit cell.

setalpha((UnitCell)self, (float)_alpha[, (int)Unit=0]) None :

Set the \(\alpha\) angle of the unit cell. The angle can be set either in degrees or radians using the Unit parameter.

setb((UnitCell)self, (float)_b) None :

Set the length of the \(b\) direction of the unit cell.

setbeta((UnitCell)self, (float)_beta[, (int)Unit=0]) None :

Set the \(\beta\) angle of the unit cell. The angle can be set either in degrees or radians using the Unit parameter.

setc((UnitCell)self, (float)_c) None :

Set the length of the \(c\) direction of the unit cell.

setgamma((UnitCell)self, (float)_gamma[, (int)Unit=0]) None :

Set the \(\gamma\) angle of the unit cell. The angle can be set either in degrees or radians using the Unit parameter.

volume((UnitCell)self) float :

Return the volume of the unit cell (in \(\rm{\AA}{^3}\))