\(\renewcommand\AA{\unicode{x212B}}\)

IkedaCarpenterConvoluted

Description

This function is an Ikeda-Carpenter function convolved with a tophat function and a Gaussian function. The Ikeda-Carpenter function is given by:

\[V = Scale \times \Big\{ (1-R)(\alpha t')^2 e^{-\alpha t'} + 2R\frac{\alpha^2 \beta}{(\alpha-\beta)^3} \times \big[ e^{-\beta t'} - e^{-\alpha t'} (1 + (\alpha - \beta)t' + \frac{1}{2}(\alpha-\beta)^2t'^2) \big] \Big\}\]

This is convolved with a tophat function (of width hatWidth) and a Gaussian function \(exp(-k_{conv} t^2)\).

There are no attributes for this function.

Properties (fitting parameters)

Name

Default

Description

A

0.0

B

0.0

R

0.0

T0

0.0

Scale

0.0

HatWidth

0.0

KConv

0.0

See Ikeda, S. & Carpenter, J.M. (1985). Nuclear Instruments and Methods in Physics Research Section A 239, 536-544 for additional details on parameters

Usage

Here is an example of generating an Ikeda-Carpenter function:

 1import numpy as np
 2import matplotlib.pyplot as plt
 3fICC = IkedaCarpenterConvoluted()
 4fICC['scale'] = 1.0
 5fICC['A'] = 0.1
 6fICC['B'] = 1.e-2
 7fICC['R'] = 0.3
 8fICC['T0'] = 27000.
 9fICC['hatWidth'] = 0.5
10fICC['k_conv'] = 120.
11
12x = np.linspace(26000, 28000,100)
13y = fICC(x)
14plt.plot(x,y)

Categories: FitFunctions | General

Source

Python: ICConvoluted.py