\(\renewcommand\AA{\unicode{x212B}}\)
SpinGlass¶
Description¶
Fitting function for use by Muon scientists defined by:
\[A(t) = A_0\left(\frac{1}{3}e^{-\sqrt{\Omega t}}+\frac{2}{3}\left(1-\frac{Qa^2t^2}{\sqrt{\Omega t+Qa^2t^2}}\right)e^{-\sqrt{\Omega t + Qa^2t^2}}\right)\]
\[\Omega = \frac{4(1-Q)a^2}{\nu}\]
where,
\(A_0\) is the amplitude,
\(Q\) is the order parameter,
\(\nu\) is the rate of Markovian modulation,
and \(a\) is the half-width half maximum of the local field Lorentzian Distribution.
Note that \(0<q<1\) and \(\gamma>0\)
Properties (fitting parameters)¶
Name |
Default |
Description |
---|---|---|
A0 |
0.2 |
Asymmetry |
Width |
0.1 |
Half-width half maximum of the local field Lorentzian Distribution |
Nu |
1.0 |
Rate of Markovian modulation |
Q |
0.1 |
Order Parameter |
References¶
[1] Y. Uemura et al., Phys. Rev. B 31 546 (1985).
Categories: FitFunctions | Muon\MuonSpecific
Source¶
Python: SpinGlass.py