\(\renewcommand\AA{\unicode{x212B}}\)

SpinGlass

Description

Fitting function for use by Muon scientists defined by:

\[A(t) = A_0\left(\frac{1}{3}e^{-\sqrt{\Omega t}}+\frac{2}{3}\left(1-\frac{Qa^2t^2}{\sqrt{\Omega t+Qa^2t^2}}\right)e^{-\sqrt{\Omega t + Qa^2t^2}}\right)\]
\[\Omega = \frac{4(1-Q)a^2}{\nu}\]

where,

\(A_0\) is the amplitude,

\(Q\) is the order parameter,

\(\nu\) is the rate of Markovian modulation,

and \(a\) is the half-width half maximum of the local field Lorentzian Distribution.

Note that \(0<q<1\) and \(\gamma>0\)

../../_images/ImageNotFound.png

Enable :plots: using DOCS_PLOTDIRECTIVE in CMake

Properties (fitting parameters)

Name

Default

Description

A0

0.2

Asymmetry

Width

0.1

Half-width half maximum of the local field Lorentzian Distribution

Nu

1.0

Rate of Markovian modulation

Q

0.1

Order Parameter

References

[1] Y. Uemura et al., Phys. Rev. B 31 546 (1985).

Categories: FitFunctions | Muon\MuonSpecific

Source

Python: SpinGlass.py