\(\renewcommand\AA{\unicode{x212B}}\)
Analytical DerivativesΒΆ
By default, currently for IFunction1D
types, a numerical derivative
is calculated. An analytical derivative can be supplied by defining a
functionDeriv1D
method, which takes three arguments: self
,
xvals
and jacobian
. The jacobian matrix (notice how it is not square)
stores the values of the partial derivatives with respect to each of the
parameter values at each of the x points.
This is most easily understood with an example:
class Example1DFunction(IFunction1D):
def init(self):
self.declareParameter("A0", 0.0)
self.declareParameter("A1", 0.0)
def function1D(self, xvals):
a0 = self.getParameterValue("A0")
a1 = self.getParameterValue("A1")
# Use numpy arithmetic to compute new array
return a0 + a1*xvals
def functionDeriv1D(self, xvals, jacobian):
for i, x in enumerate(xvals):
jacobian.set(i, 0, 1) # parameter at index 0
jacobian.set(i, 1, x) # parameter at index 1
FunctionFactory.subscribe(Example1DFunction)