\(\renewcommand\AA{\unicode{x212B}}\)
Peak Function Methods¶
IPeakFunction
defines 6 special methods for dealing with the peak shape.
The first 3 all return an estimate for the values of the centre
,
height
& fwhm
for the current parameter values.
The second 3: setCentre
, setHeight
, setFwhm
, all pass along
the current value, picked from the GUI, for the centre
, height
&
fwhm
and update the starting values of the function accordingly.
All of these functions are meant to be called automatically by Mantid and you will not need to call them yourself. It should be stressed that these values picked from the GUI just provide better starting values, during the fitting procedure these values are no longer used and the real function evaluation is performed. An example for the Gaussian follows:
def centre(self):
# Easy here as there is a direct parameter
return self.getParameterValue("PeakCentre")
def height(self):
# Easy here as there is a direct parameter
return self. getParameterValue("Height")
def fwhm(self):
# Computes the FWHM from sigma
return 2.0*math.sqrt(2.0*math.log(2.0))*self.getParameterValue("Sigma")
def setCentre(self, new_centre):
# User picked point new_centre
self.setParameter("PeakCentre", new_centre)
def setHeight(self, new_height):
# User set new height for peak
self.setParameter("Height", new_height)
def setFwhm(self, new_fwhm):
# User had a guess at the width using the range picker bar
sigma = new_fwhm/(2.0*math.sqrt(2.0*math.log(2.0)))
self.setParameter("Sigma", sigma)
Complete Example¶
For completeness the complete example PyGaussian is presented here:
from mantid.api import *
import math
import numpy as np
class PyGaussian(IPeakFunction):
def category(self):
return "Examples"
def init(self):
self.declareParameter("Height")
self.declareParameter("PeakCentre")
self.declareParameter("Sigma")
def functionLocal(self, xvals):
height = self.getParameterValue("Height")
peak_centre = self.getParameterValue("PeakCentre")
sigma = self.getParameterValue("Sigma")
weight = math.pow(1./sigma, 2)
offset_sq=np.square(xvals-peak_centre)
out=height*np.exp(-0.5*offset_sq*weight)
return out
def functionDerivLocal(self, xvals, jacobian):
height = self.getParameterValue("Height")
peak_centre = self.getParameterValue("PeakCentre")
sigma = self.getParameterValue("Sigma")
weight = math.pow(1./sigma, 2)
# X index
i = 0
for x in xvals:
diff = x-peak_centre
exp_term = math.exp(-0.5*diff*diff*weight)
jacobian.set(i, 0, exp_term)
jacobian.set(i, 1, diff*height*exp_term*weight)
# derivative with respect to weight not sigma
jacobian.set(i, 2, -0.5*diff*diff*height*exp_term)
i += 1
def activeParameter(self, index):
param_value = self.getParameterValue(index)
if index == 2: #Sigma. Actually fit to 1/(sigma^2) for stability
return 1./math.pow(param_value, 2)
else:
return param_value
def setActiveParameter(self, index, value):
param_value = value
explicit = False
if index == 2:
param_value = math.sqrt(math.fabs(1.0/value))
else:
param_value = value
# Final explicit argument is required to be false here
self.setParameter(index, param_value, False)
def centre(self):
return self.getParameterValue("PeakCentre")
def height(self):
return self.getParameterValue("Height")
def fwhm(self):
return 2.0*math.sqrt(2.0*math.log(2.0))*self.getParameterValue("Sigma")
def setCentre(self, new_centre):
self.setParameter("PeakCentre", new_centre)
def setHeight(self, new_height):
self.setParameter("Height", new_height)
def setFwhm(self, new_fwhm):
sigma = new_fwhm/(2.0*math.sqrt(2.0*math.log(2.0)))
self.setParameter("Sigma", sigma)
# Required to have Mantid recognise the new function
FunctionFactory.subscribe(PyGaussian)