Fit Stability¶
In most cases, a fit will be performed over the parameters exactly as they are declared. In some cases, however, the fit can be unstable in one or more of the parameters. As an example consider a Gaussian:
The simple function fits over 3 parameters:
A
- Amplitudec
- Peak centre\sigma
- Measure of the width
However, the
We could just naively change the sigma parameter to
Our optimisation framework actually works with the concept of active
parameters, where we allow the fitting to proceed over different parameter
than that declared by init
.
In order to translate between the two representations, the function class must provide two further methods:
activeParameter(self, index)
- Should return the value of the parameter at the given index that should take part in the fit.setActiveParameter(self, index, value)
- Called by the framework when a parameter value is updated. The function should then translate the value to its original form.
The active parameter methods are optional and are only required in the situations where the fitting parameter is not equal to the declared one. This is best illustrated by an example of a Gaussian (cut-down to show the relevant parts):
from mantid.api import *
import math
import numpy as np
class PyGaussian(IFunction1D):
def init(self):
self.declareParameter("Height")
self.declareParameter("PeakCentre")
# Parameter is declared as you want it to be seen by the user
self.declareParameter("Sigma")
def function1D(self, xvals):
# Can also be retrieve by index self.getParameterValue(0)
height = self.getParameterValue("Height")
peak_centre = self.getParameterValue("PeakCentre")
sigma = self.getParameterValue("Sigma")
weight = math.pow(1./sigma, 2)
offset_sq = np.square(xvals-peak_centre)
out = height*np.exp(-0.5*offset_sq*weight)
return out
def activeParameter(self, index):
# Return the value of the parameter at the given index
# (ordered by the order in init)
param_value = self.getParameterValue(index)
if index == 2: #Sigma. Actually fit to 1/(sigma^2) for stability
# param_value contains value of sigma
return 1./math.pow(param_value, 2)
else:
# Deal with other cases. In this case we just want value as is
return param_value
def setActiveParameter(self, index, value):
# The framework minimizer wants to update the value of the parameter
param_value = value
explicit = False
if index == 2: #sigma parameter index
# value passed in is actually 1/sigma^2 so we need to translate
# back to sigma
param_value = math.sqrt(math.fabs(1.0/value))
else:
param_value = value # others are 1:1
# Finally, actually update the values stored in function
# so that the next call to function1D sees them
self.setParameter(index, param_value, False)