\(\renewcommand\AA{\unicode{x212B}}\)

LowTFMuonium

Description

A relaxation function for a pair of transver field triplet muonium frequencies.

\[A(t)=\frac{A_0}{4}\{(1+\delta)a_{12}\cos(\omega_{12}+\phi)+ (1-\delta)a_{23}\cos(\omega_{23}+\phi)\}\]

and,

\[\delta= \frac{\chi}{\sqrt{1+\chi^2}},\]
\[\chi = (g_\mu+g_e)\frac{B}{A},\]
\[d = \frac{(g_e-g_\mu)}{g_e+g_\mu},\]
\[E_1=\frac{A}{4}(1+2d\chi),\]
\[E_2=\frac{A}{4}(-1+2\sqrt{1+\chi^2}),\]
\[E_3=\frac{A}{4}(1-2d\chi),\]
\[\omega_{ij}= 2 \pi (E_i - E_j),\]
\[a_{ij}=\frac{1}{(1+(\omega_{ij}/(2\pi f_\text{cut}))^2)},\]

where,

\(A_0\) is the amplitude,

A (MHz) is the isotropic hyperfine coupling constant,

\(\phi\) (rad) is the phase at time \(t=0\),

\(g_\mu = 0.01355342\) , the gyromagnetic ratio of muon,

\(g_e = 2.8024\) , the gyromagnetic ratio of electron,

and \(f_\text{cut} = 10^{32}\) (MHz).

(Source code, png, hires.png, pdf)

../../_images/LowTFMuonium-1.png

Properties (fitting parameters)

Name Default Description
A0 0.2 Amplitude
Field 0.1 Magnetic Field (G)
A 0.2 Isotropic hyperfine coupling constant (MHz)
Phi 0.0 Phase (rad)

Source

Python: LowTFMuonium.py (last modified: 2020-03-20)